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Tree-based ML

Chapter 1: Tree-based ML
(Non-parametric ML)
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Tree-based ML

CART

Classification and Regression Trees fit a model into each leaf
after pushing data down their branches (Breiman et al. 1984)

Machine Learning, Valente M. 3 / 62



Tree-based ML

Nonparametric methods for HD data

Tree-based methods: Supervised learning approaches

Algorithm predicts y from x using decision trees that is classifier s
mapping s : Rp → y

Non-parametric, flexible - non-linearities without explicit modeling

Technically easy to implement, relatively easy to interpret

Useful for description, exploration, and prediction of data
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Tree-based ML

Regression trees (RT)

Continuous dependent variables

Y = µ(X) + ε with E[ε|X] = 0

Ŷ = µ̂(X) = Ê[Y |X = x]

Classification trees (CT)

Discrete dependent variables

µ is Bayes (probabilistic) classifier

µ̂(X) = P̂ r(Y = k|X = x)
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Tree-based ML

Deriving prediction with trees

µ̂ derived with training data - prediction accuracy with test data

1 Use training set to divide predictor space, i.e., the set of possible
values for X1, ..., Xp into J distinct regions R1, ..., RJ

2 For every observation of the test set that falls into Rj , we make the
same prediction ŷRj

1 Predictor (µ̂) in regression tree: Average outcome (ȳ) in Rj

2 Quality of prediction: MSE = 1
n

∑n
i (yi − ŷi)

2

3 Comparison of prediction accuracy of different trees: MSE for test set
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Tree-based ML
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Tree-based ML Classification and Regression Trees (CART)

Example: Predicting baseball player’s salary

Major League Baseball Data, seasons 1986-87, 322 players
Response (dependent variable): log of salary in thousand $
Predictors: experience (years in major leagues) and hits (hits last year)

logSalary
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Tree-based ML Classification and Regression Trees (CART)

Standard linear regression results

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2751 0.1184 36.11 0.0000

Hits 0.0087 0.0009 9.85 0.0000
Years 0.0982 0.0083 11.85 0.0000

Salary increases with years of experience and hitting success, both
highly significant
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Tree-based ML Classification and Regression Trees (CART)

Regression tree

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Interpretation

If less than 4.5yrs experience, mean
log income is 5.11$
If more than 4.5yrs experience,
matters! Mean log income is:

6.0 if < 117.5 hits last year
6.74 if > 117.5 hits last year
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Tree-based ML Classification and Regression Trees (CART)

Tree partitions players into three
regions
R1 = {Y |yrs < 4.5}
R2 = {Y |yrs > 4.5, h < 117.5}
R3 = {Y |yrs > 4.5, h > 117.5}

Each region has obs. with
similar income ŷR1 = 5.11
ŷR2 = 6.00 ŷR3 = 6.74

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2
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Tree-based ML Classification and Regression Trees (CART)

Interpretation of results

Standard regression model

Salary increases with years of experience and hitting success, both
highly significant

Tree-based model

Year: most important factor determining salary, salary increases with
experience

For less experienced players, ”hits” are of no relevance for salary

For players with more than 5yrs experience, the hits in the last period
positively influence the salary
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Tree-based ML Classification and Regression Trees (CART)

How to derive a regression tree

How to derive R1, ..., Rp?

Intuition: Consider Rj as rectangles that partition the X space
depending on values of Xj

Find R1, ..., RJ that minimize RSS =
∑J

j=1

∑
i∈Rj

(yi − ˆyRj )
2

→ Recursive partitioning

Machine Learning, Valente M. 13 / 62



Tree-based ML Classification and Regression Trees (CART)
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Tree-based ML Classification and Regression Trees (CART)

Recursive partitioning - Top-down splitting

1) Start at top of tree → single space R

2) Partition R: R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}
Identify predictor Xj and split point s that minimizes RSS

min
j,s

∑
i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2

3) Identify RSS-minimizing (j, s) to partition R1 (or R2) into R3 and R4

· · ·

J) Identify RSS-minimizing (j, s) to partition Rj into RJ and RJ+1

Machine Learning, Valente M. 15 / 62



Tree-based ML Classification and Regression Trees (CART)

Recursive partitioning

Overfitting: if J(nr. leaves)= n(nr. obs) → yi = ŷRi

Complex trees: bad predictions in test set

Smaller trees: smaller variance, better interpretation, but bias

Avoiding too complex trees - stopping criteria

Minimum number of observations in Rj

Maximum number of final regions Rj (max. tree depth)

RSS reduction greater than threshold

Machine Learning, Valente M. 16 / 62



Tree-based ML Classification and Regression Trees (CART)

Example for recursive partitioning

Binary splitting - Corresponding tree - Contour of prediction surface
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Tree-based ML Classification and Regression Trees (CART)

Pruning

Shorten a complex tree T0 to obtain a subtree

Penalize tree depth: define number of terminal nodes T (< T0)

For a given α, identify Xj and split point s that minimizes RSS:

min
j,s

∑
i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2 + αT

α controls trade-off: less complexity (more bias in training set, less
variance) to better fit test data

α = 0 delivers T0; α > 0 increases the RSS → penalizes complexity IS

Breiman (1984): for each α there is a unique Tα minimizing the above

Machine Learning, Valente M. 18 / 62



Tree-based ML Classification and Regression Trees (CART)

Example: Salaries in baseball - Pruning

x-axis: resulting tree size for α = 0.1, 0.2, ..., 7

y-axis: RSS (deviance)
∑

i(yi − ŷi)
2

Left: Training set, Right: Test set
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Tree-based ML Classification and Regression Trees (CART)

Example: Salaries in Baseball - Pruning

Unpruned tree (MSE: 0.370)

|Years < 4.5

Years < 3.5

Walks < 13.5

Hits < 114.5

Walks < 46

Hits < 117.5

Walks < 21.5

Years < 6.5

PutOuts < 183.5

RBI < 103

Walks < 74
5.715

4.598 5.269

5.294 6.123 5.703

6.071 5.330

6.325 6.521 7.056

7.341

Pruned tree (MSE: 0.300)

|Years < 4.5

Years < 3.5 Hits < 117.5

4.878 5.570 6.051 6.725
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Tree-based ML Classification and Regression Trees (CART)

Implementation in R

R Packages

rpart + rpart.plot

party

caret

tree

Machine Learning, Valente M. 21 / 62



Tree-based ML Classification and Regression Trees (CART)

Regression tree example with rpart

Build a tree

1 tree <- rpart(logSalary ~ . , Estimation

2 data=train , Dataset to use

3 control=rpart.control(cp=0)) Complexity Parameter

In R, tuning parameter (stopping criterion) is called cp. Higher cp, shorter
tree. Cp=0 means full tree (of maxdepth=30 by default in R). Cp is
minimum explained variance by a split to occur

Prune the tree

1 pruned_tree <- prune(tree , cp =0.01) Pruning with cp=0.01

Cp=0.01 means perform the split if explained variance is at least 1%

Plot the tree: Compare full tree with pruned tree

1 rpart.plot(tree)

2 rpart.plot(pruned_tree)

Machine Learning, Valente M. 22 / 62



Tree-based ML Classification and Regression Trees (CART)

Cross validation (CV)

We can tune α to produce the best OOS prediction
k-fold cross validation:

1 Split data into k subsets (folds) of similar size

2 For each k
1 Use fold k as test set - remaining k − 1 folds are one training set

2 Pick a value for the tuning parameter (α)

3 Fit model using the k − 1 folds other than fold k

4 Calculate MSEk for observations in k (test set)

3 Among the values of α pick the one associated to the lowest MSEk

→ Usually k = 10 or k = 5 is used (R automatically sets k = 10)
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Tree-based ML Classification and Regression Trees (CART)

k-fold CV in detail

Split data into k mutually exclusive subsets of equal size

E.g. 10-fold CV, N=101: 9 folds of 10 items and 1 fold of 11 items

k=10 for small dataset, 5 otherwise (best bias-variance trade-off empirically:

k too small high variance (full data and folds too similar) vs. k too big high bias
(small folds more likely to be noisy)

k train/validation splits for k evaluation rounds:

Machine Learning, Valente M. 24 / 62



Tree-based ML Classification and Regression Trees (CART)

Cross validation for model tuning

Why? How we train/test split datasets (if small or medium sized) can
make a significant difference: the results can vary tremendously

With CV we technically don’t even need a test set

Still holding out a test set allows to evaluate different algorithms
on the same held-out data

Tree: Prune tree using CV to reduce tree size optimally (pick optimal
complexity parameter α)

Importantly, even without CV, trees are often pruned in R:
maxdepth=30 by default, and min. nodesize=5 is common in RT

Random forest (coming soon): No need of CV because each tree is
unpruned

Machine Learning, Valente M. 25 / 62



Tree-based ML Classification and Regression Trees (CART)

Example for classification tree (Titanic data)

In the night of 14 April through to the morning of 15 April 1912, the RMS Titanic
sank on its maiden voyage from Southampton to New York. Of the estimated
2,224 people on board, more than 1,500 found death in the North Atlantic Ocean.

Our R session aims to identify the variables that best predict survival and death of
the passengers using tree-based methods.

Our task is to train algorithms to predict survival/death of passengers accurately.

We use a dataset of 1,000 passengers of the Titanic that contains passenger’s
information, e.g., age, name, and family status, the ticket price that was paid, and
a binary variable that equals 1 if the passenger survived.

Deriving further features/predictors from the given data is your task as it may
increase predictive power of the algorithm considerably.
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Tree-based ML Classification and Regression Trees (CART)

The Titanic contest

Derive further features/predictors from the given data - this may increase
predictive power of the algorithm considerably!

To check the accuracy of the trained algorithm, another dataset of around 190
passengers is used as ultimate test data. This dataset contains the same
information as the main dataset - except for the survival dummy variable.

We will run some algorithms together, then at home please add/create new
variables and try to improve the OOS fit.

Then I will make available the true survivors data and you will see how your
algorithm performed.

Voluntary
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Tree-based ML Classification and Regression Trees (CART)

Example for classification tree (Titanic data)

Pruned tree

Misclassification error stable
(y-axis, in R called xerror)

Optimal size already with 6 leafs

This corresponds to α = 0.023

Optimal pruned tree (opt. α)

Training set misclassification =
43% (unpruned: 32% )

Test set misclassification = 17%
(unpruned: 27%)
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Tree-based ML Classification and Regression Trees (CART)

Classification tree example with rpart

Build a tree

1 model.rpart <- rpart(survived ~ ., Estimation

2 data = titanic.train , Dataset to use

3 method = "class", Classification

4 control = rpart.control(cp=0)) Complexity

Prune the tree

1 model.pruned <- prune(model.rpart ,cp =0.023) Pruning with cp =0.023

Plot the tree

1 rpart.plot(model.pruned)
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Tree-based ML Classification and Regression Trees (CART)

“CP” (“complexity”): % reduction in classification error with that split

1% is the default limit for deciding when to stop splitting (CP=0.01)

At CP=0.01 we prune off splits which do not improve the fit by at least 1%

“rel error”: standardized classification error in % (divided by error with no splits)

With CV (e.g. xval=5) “xerror” is the CV error, “xstd” its variability across folds

CP∗ at min(xerror)

nsplit=0 means 100% error (CP=1), 1 split means 45% improved fit (CP=0.45)

nsplit=150 leads to 4.5% error: in R splits are blocked when maxdepth=30
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Tree-based ML Classification and Regression Trees (CART)

CV in R - example for Titanic data

Build full tree

1 CT_CV5 <- rpart(survived ~ ., Estimation

2 data=titanic.train , Data

3 method="class", Classification

4 control=rpart.control(xval =5))

5 Starting from full complexity (deep tree), 5-fold CV

6 Default is xval=10, 10-fold CV

Identify optimal pruning parameter

1 cp_opt <- CT_CV5$cptable[which.min(CT_CV5$cptable [,4]) ,1]

Prune tree with optimal parameter

1 CT_CV5 <- prune(CT_CV5 ,cp=cp_opt)

Machine Learning, Valente M. 31 / 62



Tree-based ML Classification and Regression Trees (CART)

Summary on tree-based methods

Advantages

Easy to interpret, easy to explain - useful graphical representation

Useful for data description, exploration, and prediction

Outperforms LM if relationships are non-linear - without modeling

Endogenous variable selection

Outlier robustness - splits are not at the tails of the data: Since,
extreme values or outliers, never cause much reduction in RSS, they
are never involved in split.

No dimensionality problems (handles very large X)

Categorical predictors can be included without additional dummies

All variables are allowed to interact
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Tree-based ML Classification and Regression Trees (CART)

Disadvantages

Variable selection is data-driven, not theory-driven - Interpretation
can be difficult

Too much information: “Paralysis of the analysis”
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Tree-based ML Bagging - Bootstrap aggregation

Bagging - Bootstrap aggregation

Motivation

Deeper trees: Variance increases, bias decreases

But: repeating procedure and averaging results reduces variance

Bagging procedure

1 Split data set B times in training sets (bootstrap random samples)

2 Build deep tree on bth data set to obtain f̂∗b(x)

3 Average predictions across B trees (in-sample):

f̂bag =
1

B

B∑
b=1

f̂b(x)
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Tree-based ML Bagging - Bootstrap aggregation

How to assess performance? → Out-of-bag (OOB) error

Each b contains sample not used to train f̂b - the Out-of-bag sample
→ Each obs. will be predicted multiple times (in different trees)

Use trees that do not contain i

For each i OOB, average predictions across trees, then estimate MSE

Prediction are obtained as f̂i =
1
B

∑B
b=1 f̂

−i
b (x)

Choice of B: “high enough” - no risk of overfitting (trees are deep!)
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Tree-based ML Bagging - Bootstrap aggregation

Creation of Bag and Out-Of-Bag (OOB)

Bootstrap: for every bag, draw at random 1000 obs. (1 obs. 1000 times). Each draw is
made with replacement. Meaning, when the 1st sample is chosen, there are 1000

options to chose from.
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Tree-based ML Bootstrap Sampling

How Random can the Forest be?

Fraction of obs. in the bag is around 63.2% (with bootstrap).
Proof:

n. of obs. in training set = n

Size of each bag = n

Probability of an obs. being selected in a draw = 1/n

Probability of an obs. not being selected in a draw = 1-(1/n)

Number of draws = Size of Bag = n

For each bag, the probability of an obs. not being selected at all =
[1-(1/n)]n

As the value of n increases, this value tends to 36.8%

Probability of an obs. making it into the bag after n draws

= 1 – 36.8%

= 63.2%
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Tree-based ML Bootstrap Sampling

The history of bootstrap
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Tree-based ML Bootstrap Sampling

The history of bootstrap

History. The term is often attributed to Rudolf Erich Raspe’s story
The Surprising Adventures of Baron Munchausen

He is riding around on his horse in a forest and suddenly gets stuck in
mud. He screams for help but there is no one around who hears his
voice! Luckily our hero does not give up and gets a great idea: “what
if I just pull myself out of this mud?”. He grabs the straps of his boots
and pulls himself loose. Fantastic - he just invented bootstrapping.

Nowadays. Bootstrapping means “to pull yourself up by your
bootstraps”: to help yourself without the aid of others; use your own
resources (e.g. shall I bootstrap my startup? = build my business
with my own resources without external investment or with minimal
external capital)
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Tree-based ML Random Forests

Combining random trees into a forest

Inject randomness into trees, and build a forest to reduce variance
and improve OOB predictions (Breiman, 2001)
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Tree-based ML Random Forests

Random Forests (RF)

Motivation

If there is a strong predictor, all bagged trees will look similar - using
this strong predictor for the first split
→ Predictions from the bagged trees are highly correlated

RF decorrelates the B trees

´At each split, tree b uses only a random subset m of the p
predictors → Trees are more different from each other

Default in R: m =
√
p (or smaller if predictors highly correlated)
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Tree-based ML Random Forests

Random Forest Procedure

B trees build a forest. For b in 1, ..., B

1 Draw bootstrap sample of the training data

2 Grow tree with recursive partitioning until minimum node size is
reached. Thereby

1 At each split select a random subset of predictors m
2 Use the optimal split using only the m predictors

3 The ensemble of trees is a sequence of trees

4 Each observation i is IS for some trees, and OOS in other trees

5 To make predictions for each observation i, take the average outcome
(or majority rule) using only trees where i is OOS

6 Prediction are obtained as f̂i =
1
B

∑B
b=1 f̂

−i
b (x)
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Tree-based ML Random Forests

RF Bias?

Each tree b is a weak learner - uses less information than a standard
tree

To achieve low bias each tree is grown to maximum depth
(considering that in R maxdepth=30 splits)

Choice of B: “high enough” - test set error converges, no risk of
overfitting
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Tree-based ML Random Forests

Bagging in R: bagging()

Bagging parameters

Choice of B (nbagg)

Use OOB sample to estimate the missclass. error or RSS
(coob=TRUE)

And as in standard CT / RT

Min. number of obs. to split (rpart: minsplit)

Min. number of obs. in leaves (rpart: minbucket)

Tree complexity (rpart: cp)

Maximum tree depth (rpart: maxdepth)

...

Leo Breiman (1996), Bagging Predictors. Machine Learning 24(2), 123-140.
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Tree-based ML Random Forests

Random Forest parameters

Number of trees B (randomForest: ntree)

Subsample size in b (randomForest: sampsize)

Number of variables considered for splitting m (randomForest: mtry)

And as in standard CT / RT

Min. number of obs. in leaves (randomForest: nodesize)

Maximum tree depth (randomForest: maxnodes)

...
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Tree-based ML Random Forests

Random Forest example with randomForest

Build a Random Forest

1 RF_tree <- randomForest(AHD ~ ., Estimation

2 data=train , Dataset to use

3 mtry=2, m

4 ntree =500, Number of trees

5 maxnodes =4) Maximum nr. of nodes

Prediction

1 pruned_tree <- predict(RF_tree , newdata=test)

Plot RF OOB training error

1 plot(RF$err.rate[,1], type="l")
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Tree-based ML Random Forests

RF algorithm: Summary

1 Random Item Selection: Each tree is trained on about 2/3 of full data (exactly
63.2%). Obs. are drawn at random with replacement from the original data
(=bootstrap). The bootstrap sample is the training set for growing the tree.

2 Random Variable Selection: Some predictor variables (mtry, typically 1/3) are
selected at random out of all the predictor variables and the best split on these
mtry is used to split the node

Note: The value of mtry is held constant during the forest growing.

Recall: In a standard tree, each split is created after examining every variable and
picking the best split from all the variables (not just mtry of them)

3 For each tree, using the leftover (36.8%) data, calculate the misclassification or
MSE rate - out of bag (OOB) error rate. Aggregate error from all trees to
determine overall OOB error rate for the classification. in R:

1 RF # random forest from running randomForest ()

2 print(RF) # gives overall OOB error rate

If we grow 500 trees, on average an obs. will be OOB for about .37*500=185 trees

Machine Learning, Valente M. 47 / 62



Tree-based ML FAQ

Frequently Asked Questions

How “deep” is actually each tree?

→ randomForest( ... nodesize=) Min size of terminal nodes. Setting
this number larger causes smaller trees and thus takes less time.
Default values differ for classification (1) and regression (5)

Can we reduce variance by increasing nodesize?

→ The whole idea of RF is to build deep trees and reduce variance by
averaging predictions across trees: if OOB too high (because RF
variance is high, i.e. you are overfitting) then increase ntree to reduce
variance and/or reduce mtry to reduce noise due to correlated trees
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Tree-based ML FAQ

What is the role of mtry in growing a tree?

→ mtry: n. of variables randomly sampled as candidates at each split.
The algorithm searches the optimal split using mtry variables only.
Default values differ for classification: sqrt(p) where p is number of
predictors vs. regression p/3

How likely it is that we do not have an OOB sample?

→ For each bag of size n, the probability of an obs. not being selected
at all = [1-(1/n)]n >>> 0 (already >36% for each tree with n=100)

→ If n small and ntree small, bags and OOB may be too
correlated/noisy: Increase the number of bags (trees)!
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Tree-based ML FAQ

In practice, if the OOB error is high, which are the most important
parameters to change?

→ Increase ntree / tune mtry using tuneRF()

1 tuneRF(x, y, mtryStart , ntreeTry =50, stepFactor =2,

2 improve =0.05, doBest=FALSE , ...)

x,y = matrix of predictors, vector of outcomes

mtryStart = starting value of mtry. Default is mtry in randomForest

ntreeTry = number of trees used at the tuning step (smaller als ntree)

stepFactor=at each split, mtry is inflated (or deflated) by this value

improve = the (relative) improvement in OOB error must be by this
much for the search to continue

doBest= whether to run a forest using the optimal mtry found

Machine Learning, Valente M. 50 / 62



Tree-based ML Variable Importance Measures

Interpretation

Problem: How to interpret B trees?

→ Variable importance

→ Variable marginal effects
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Tree-based ML Variable Importance Measures

Problem: How to interpret B trees? → Variable importance

Record for each tree how much RSS reduces due to a split for a
predictor (or missclassification error for CT)

RSS gain averaged over B is a measure for variable importance
→ Large RSS gain: important predictor

For classification: Gini Index used instead of misclassification error

If, after a split, each node becomes more pure = informative split!

min. Gini Index is 0 = pure node = all elements in the node are of
one unique class: this node will not be split again! Thus, the
optimum split is chosen by the features with less Gini Index

Decrease in Gini = lower variance WITHIN node = higher variance
ACROSS nodes → Large Gini decrease: important predictor

1 varImpPlot(RF_tress) # computes variable importance in R
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Tree-based ML Variable Importance Measures

Random Forest: Variable Importance Plot
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Tree-based ML Variable Importance Measures

Problem: How to interpret B trees? → Variable marginal effects

How to compute the marginal effect of x1 on y?

Is the relationship between y and x1 linear, monotonic or more
complex?

Linear regression models: relationship is linear

Compute marginal effect of x = Compute Partial Dependence
Functions (and plot them!)

Visualization is one of the most powerful interpretational tools

Partial Dependence Plots (PDP) help interpret models produced by
any “black box” prediction method
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Tree-based ML Variable Importance Measures

RF: Estimating the marginal effect of x1

For regression problems (y continuous):

1 Estimate the forest, then define a specific set of values for x1

2 For a given value of x1, predict outcome for all individuals

3 Average n predictions for that level of x1

4 Function mapping x1 to average predictions is a “partial function”

5 Plot avg prediction on y-axis, corresponding value of x1 on x-axis
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Tree-based ML Variable Importance Measures

RF: Estimating the marginal effect of x1

For classification problems (y discrete):

1 Instead of averaging predictions for a given value of x1, get the
share of “votes” for each class and compute partial function

2 E.g. age = 3 and n = 100: Assume 20 obs. are predicted to die (0)
and 80 are predicted to survive (1), so p0 = 0.2 and p1 = 1− p0 = 0.8

3 Thus, age = 3 is associated to low probability to die

4 Take “die” as reference class, plot partial function (pf) on y-axis:
pf(age = 3) = log(0.2)− 1

2 log(0.8) = −1.5

5 This is the relative logit contribution of age = 3 on prob. to die

6 Negative values on y-axis = low probability to die ceteris paribus

7 Positive values on y-axis = high probability to die ceteris paribus

8 Zero value on y-axis = zero marginal effect
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Tree-based ML Variable Importance Measures

RF: Partial Dependence Plot
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Tree-based ML Variable Importance Measures

R Code for Partial Dependence Plot (PDP)

1 library(pdp) # pdp is one the many packages for PDP

2 library(dplyr) # for the %>% operator

3

4 RF # object (forest) estimated with randomForest package

5

6 RF %>% # the %>% operator is read as "and then"

7 partial(pred.var = "age") %>% # estimate pf(age)

8 plotPartial(smooth = TRUE , # fit a smooth blue line

9 ylab = expression(pf(age)), # y label and title

10 main ="Marginal effect of age on probability to die")
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Tree-based ML Variable Importance Measures

RF: Partial Dependence Plot

1 partialPlot(RF , pred.data = trdata , x.var="sex")

Machine Learning, Valente M. 59 / 62



Tree-based ML Variable Importance Measures

RF: Partial Dependence Plot

1 partialPlot(RF , pred.data = trdata , x.var="pclass")
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Tree-based ML Variable Importance Measures

Partial dependence plot of 2 variables at once

1 RF %>%

2 partial(pred.var = c("age", "pclass")) %>%

3 plotPartial(smooth=TRUE , ylab = expression(pf(age , class)))
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Tree-based ML Variable Importance Measures

Partial dependence plot of 2 variables at once (heatmap)

1 dataheat <- RF %>% partial(pred.var = c("age", "pclass"))

2

3 ggplot(data = dataheat , aes(x = age , y = pclass , fill = yhat)) +

4 geom_tile() +

5 scale_fill_gradient2(low = "blue", high = "yellow", midpoint = 0) +

6 labs(title = "Partial Dependence Heatmap for age and class")

Interpret: Titanic 3rd class die more than 1st class, old die more than young,
most deaths for aged 40 in 3rd class, least deaths for kids in 2nd class
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