Machine Learning

Marica Valente¹

June 25, 2024

¹Assistant Professor, University of Innsbruck (marica.valente@uibk.ac.at)

Outline

Causal ML

- Double ML
- Why heterogeneity matters
- Causal trees and forests

Chapter 3: Causal ML

Review of causal inference methods in HD

Double ML methods and post-LASSO

• Belloni and Chernozhukov 13; Chernozhukov et al. 17

② Causal Trees and Causal Forests

• Athey and Imbens 16; Wager and Athey 18, Athey et al. 2019

Review of causal inference methods in HD

1 Double ML methods and post-LASSO

• Belloni and Chernozhukov 13; Chernozhukov et al. 17

2

What to do with a great predictor?

Double ML: Prediction in the service of estimation \Rightarrow Transform $\hat{\beta}$ problems into \hat{y} problems

• Causal analysis: estimate the impact of a low-dimensional parameter, e.g. the effect of a treatment \boldsymbol{d}

- Problem: many other variables x correlate with y AND d
- These variables x are called "confounders"

Causal effects with confounding: Example

- Smoking $(d) \rightarrow$ Lung cancer (y)
- Compare $y_{smokers}$ ("treated" group) to $y_{nonsmokers}$ ("control" group)
- Collect a sample of smokers (d > 0) with/without cancer
- Collect a sample of nonsmokers (d = 0) with/without cancer
- Estimate α using model: $y_i = \alpha d_i + \beta x_i + \epsilon_i$ for each individual *i*
- \Rightarrow What are possible confounders x_i ?

Causal effects with confounding: Example

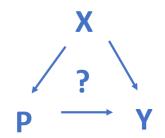
- Smoking $(d) \rightarrow$ Lung cancer (y)
- Compare $y_{smokers}$ ("treated" group) to $y_{nonsmokers}$ ("control" group)
- Collect a sample of smokers (d > 0) with/without cancer
- Collect a sample of nonsmokers (d = 0) with/without cancer
- Estimate α using model: $y_i = \alpha d_i + \beta x_i + \epsilon_i$ for each individual *i*
- \Rightarrow What are possible confounders x_i ?
 - Anything that makes smokers differ from nonsmokers and correlates with y
 - E.g. age, living in polluted cities, family history of lung cancer

ML methods to adjust for confounding

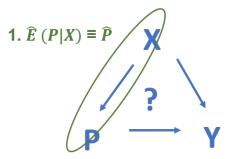
- Use ML to **predict impact of** x that confound estimation of d on y
- Intuition:
 - **1** remove the impact of x on y
 - **2** remove the impact of x on d
 - **(3)** then estimate causal effect of d on y
- When confounding is large (many, correlated x), OLS breaks down
- ⇒ Double selection/Residualization methods to flexibly remove high-dimensional confounding

Consider the **causal effect of a Policy** (P) on an outcome (Y), e.g. *the effects of a green tax policy* (P) *on pollution* (Y)

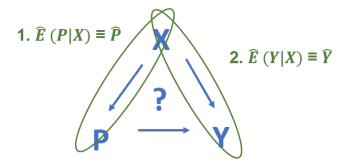
We are interested in the impact of P on Y

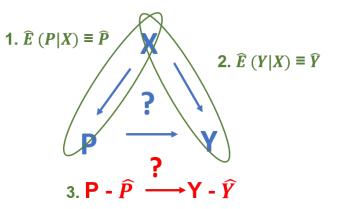


But we have a set of X that may impact both



Control for confounding in three stages





Using LASSO for Prediction (Step 1 and 2)

- LASSO can estimate the mean outcome y given x with nearly the fastest possible rate of convergence given the model complexity, and thus is hard to improve on
- LASSO (or any other method) is **not perfect at model selection** might include meaningless variables, exclude some relevant regressors
- LASSO biases/shrinks the non-zero coefficient estimates towards 0
- \Rightarrow Motivates the use of Least squares after Lasso, or Post-Lasso

LASSO biases

• Fit LASSO with (x_1, x_2, x_3) on true model $y = 2x_2 - x_3 + \epsilon$

• Selection biases:

$$oldsymbol{0}$$
 $ho(x_2,x_3)$ large $ightarrow \hateta_3=0$ (compactification bias)

2
$$ho(x_1, 2x_2 - x_3)$$
 large $ightarrow \hat{eta}_1
eq 0$ (expansion bias)

• Size biases:

(

- (1) $\hat{eta}_3 = 0 o x_3$ not selected $o \hat{eta}_2$ biased (omitted variable)
- (2) $\hat{\beta}_1 \neq 0 \rightarrow$ even if x_2, x_3 selected, $\hat{\beta}_2, \hat{\beta}_3$ biased towards zero (shrinkage)
- \Rightarrow In high dimensions, empirical (vs. real) correlations ubiquitous

The Post-LASSO estimator

In step two, apply OLS to the selected model

Properties of Post-LASSO (post model selection estimator):

- Performs at least as well as LASSO and has a lower bias (unshrinks β)
- This nice performance occurs even if the LASSO fails in step one, i.e., misses important regressors
- Intuition?

Slides based on Chernozhukov NBER lectures 2013, for video click here.

The Post-LASSO estimator

Intuition behind improved performance of Post-LASSO:

- Intuition: LASSO omits only those components with small coefficients
- Not a big deal if we miss out x that are only weak predictors of outcome and treatment in step 1 and 2
- Why? Small mistakes in step 1 and 2 are going to wash out in step 3 (at least in theory)
- \Rightarrow This result was first derived for LS by Belloni and Chernoz. (Bernoulli, 13). Extended to heteroscedastic, non-Gaussian case in Belloni, Chen, Chernoz., Hansen (Econometrica, 12)

Machine Learning, Valente M.

Slides based on Chernozhukov NBER lectures 2013, for video click here.

Post-LASSO for inference on target parameter

Consider inference on the target coefficient α in the model:

$$y_i = d_i \alpha + x'_i \beta + \epsilon_i, \ \mathbb{E}\left[\epsilon_i x_i\right] = 0, \ \mathbb{E}\left[\epsilon_i d_i\right] = 0$$

• d_i is target regressor e.g. treatment/policy variable

- In general $\rho(d_i, x_i) \neq 0$, so α cannot be consistently estimated by the regression of y_i on d_i (regularization/shrinkage bias)
- Assuming approximate sparsity, the relationship of d_i to x_i writes:

$$d_i = x_i' \pi^d + \gamma_i^d$$
 , $\mathbb{E}\left[\gamma_i^d x_i\right] = 0$

⇒ We canNOT use naive estimates of α based simply on applying LASSO and Post-LASSO to the first equation - Why?

The Naive Post-LASSO estimator

() Select controls terms by running LASSO of y_i on d_i and x_i

2 Estimate α by OLS of y_i on d_i and selected x_i **Caveats:**

- Omitted variable bias from estimating $x'_i\beta$ in HD
- Breaks down both theoretically (Leeb and Potscher 09) and practically
- $\Rightarrow\,$ Such a strategy in general does not produce good estimators of $\alpha\,$
- \Rightarrow Solution: Use residualization/double selection methods for α

Residualization/Double Selection Methods

Ouble Selection

- 0 Select controls x that predict y by LASSO
- **②** Select controls x that predict d by LASSO
- **3** Run OLS of y on d and the **union** of controls selected in steps 1 and 2

2 Partialling Out / Residualization / R-learning (in HD)

- **()** Partial out the x-variables from y
- Partial out the x-variables from d
- 8 Run OLS on the residuals

Cross-fitting

Intuition: Decorrelate model error from estimation error for consistency \Rightarrow Run Post-LASSO in step 3 on held-out data not used in steps 1 and 2

- Chern. et al. 17 (AER) suggest to implement doubly-robust estimators by "cross-fitting" = k-fold cross-validation
 - Split the data in k folds (parts)
 - Estimate step 1 and 2 on K-1 folds (without using data from k)
 - Estimate causal effect for fold k using estimates in step 1,2
 - Repeat for every fold k=1:K
 - Final causal effect is computed as average of these K estimators
- $\Rightarrow\,$ Estimator is consistent and $\sqrt{n}\text{-convergent}$

Pros and cons of cross-fitting

Pros:

- Each ML estimator of steps 1,2 may converge slowly
- "Bad" estimators can be combined

Cons:

- In practice, steps 1, 2 rely on assumptions to produce credible estimates of causal effects
- Prediction of d and y can be imprecise but in practice must be accurate (otherwise researchers are skeptical)

Double Selection in linear models

- $\textbf{9} \ \text{Run the outcome equation:} \ y_i = x_i' \pi^y + \gamma_i^y \ \text{,} \ \mathbb{E}\left[\gamma_i^y x_i\right] = 0$
- ② Run the selection equation: $d_i = x_i' \pi^d + \gamma_i^d$, $\mathbb{E}\left[\gamma_i^d x_i\right] = 0$
- **3** Run the final outcome equation: $y_i = \alpha x_i + \epsilon_i$, $\mathbb{E}[\epsilon_i x_i] = 0$
 - Three steps: LASSO for steps 1 and 2, Post-LASSO for step 3 with union of variables selected in steps 1 and 2
 - Small model selection mistakes will no longer be important under approx. sparsity of 1 and 2
 - OLS st.err. valid if 3 is estimated on independent sample from 1 and 2

Pros and cons of Double Selection

Advantages:

- Good statistical properties
- Easy to implement, not computationally heavy

Disadvantages:

- Final outcome model can include controls related to d but not y
- \Rightarrow Threat to assumption of approximate sparsity (many x selected)
 - Union may contain variables that are highly correlated
- \Rightarrow Multicollinearity problems (especially with polynomials!)

Residualization in linear models

- **()** Remember the selection equation: $d_i = x_i' \pi^d + \gamma_i^d$, $\mathbb{E}\left[\gamma_i^d x_i\right] = 0$
- 2 Consider the outcome equation: $y_i = x'_i \pi^y + \gamma^y_i$, $\mathbb{E}[\gamma^y_i x_i] = 0$
- **③** Consider the regression model: $\gamma_i^y = \alpha \gamma_i^d + \epsilon_i$
 - γ_i^y is the residual left after partialling out linear effect of x_i from y_i
 - γ_i^d is the residual left after partialling out linear effect of x_i from d_i
 - After partialling out, α is coefficient in the reg of γ_i^y on γ_i^d
 - This is the so-called Frisch-Waugh-Lovell theorem

Double ML: Summary

Advantages

- Useful for approximately sparse models (most models are not overly complex, few x are useful to explain y)
- Safeguards against specification searches (ad-hoc model selection) and p-hacking (data manipulation)
- Useful for model selection: data-driven and flexible (can specify also non-linear terms and interactions between x)
- Rationalizes why naive Post-LASSO fails (correlation between d, y, x)
- Use double selection to protect against omitted variable bias

Double ML with hdm

Partial fit via post-LASSO

```
1 rY = rlasso(fmla.y, data = dat)$res
2 rD = rlasso(fmla.d, data = dat)$res
3 partial.fit.postlasso = lm(rY ~ rD)
```

Function "rlassoEffect" for double ML methods

```
1 PO = rlassoEffect(X[, -1], y, X[, 1], method = "partialling out")
2 # Does the same as partial.fit.postlasso above
3 DS = rlassoEffect(X[, -1], y, X[, 1], method = "double selection")
4 # The two methods are first-order equivalent in both low- and
5 # high-dimensional settings under regularity conditions
```

Inference on a set of variables of interest (Belloni, Chern., Kato 14)

```
1 lasso.e = rlassoEffects(fm, I = ~X1 + X2 + X3 + X50, data = data)
2 summary(lasso.e)
3 confint(lasso.e)
4 plot(lasso.e, main = "Confidence Intervals")
```

Review of causal inference methods in HD

Double ML methods and post-LASSO

• Belloni and Chernozhukov 2013; Chernozhukov et al. 2017

② Causal Trees and Causal Forests

• Athey and Imbens 2016; Wager and Athey 2018, Athey et al. 2019

Review of causal inference methods in HD

•

2 Causal Trees and Causal Forests

• Athey and Imbens 2016; Wager and Athey 2018, Athey et al. 2019

Importance of uncovering heterogeneities

The Story, Part I

- In the late 1940s, the United States Air Force had a serious problem: its pilots could not keep control of their planes (up to 17 deaths per day)
- Pilots had already been pre-selected because they appeared to be average sized
- Military engineers began to wonder if the pilots had gotten bigger over time

Fig. The cockpit problem (U.S. Air Force photo)

- In 1950, the Air Force measured more than 4,000 pilots on many dimensions of size, and then calculated the average for each dimension
- Everyone believed this improved calculation of the average pilot would lead to a better-fitting cockpit and reduce the number of crashes

The Story, Part II

- Gilbert Daniels, a newly hired 23-year-old scientist, had doubts
- "How many pilots really were average?" The average pilot did not exist
- "Average" pilot defined by having most measures within the average range ($\pm 30\%$)

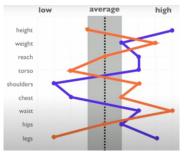
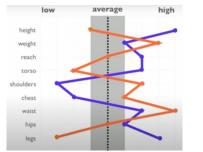
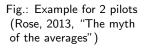


Fig.: Example for 2 pilots (Rose, 2013, "The myth of the averages")

The Story, Part II

- Gilbert Daniels, a newly hired 23-year-old scientist, had doubts
- "How many pilots really were average?" The average pilot did not exist
- "Average" pilot defined by having most measures within the average range ($\pm 30\%$)

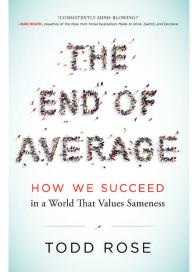




• Out of 4,063 pilots, no single airman fit within the average range on all dimensions

- Less than 3.5% of pilots would be average sized on 3 dimensions
 - $\Rightarrow\,$ Cockpits designed to fit the average pilot would fit no one
 - \Rightarrow Adjustable seats were born. Pilots' performance boomed

"Systems designed around the average are doomed to fail"



Why heterogeneity matters in science?

Effect heterogeneity: Study how causal effects vary in different subpopulations

Why heterogeneity matters in science?

Effect heterogeneity: Study how causal effects vary in different subpopulations

- Personalize treatment effects and policy targeting
- ② Generalize the causal finding to different populations
- Setter understanding of the causal mechanism
- Make inference less sensitive to unmeasured confounding
- $\Rightarrow\,$ However, modern applications can easily have tens or hundreds of potential effect modifiers: In this case, it is impractical to consider the subgroups exhaustively
- \Rightarrow ML methods come to hand

Using statistics to detect heterogeneity

Traditional approaches:

Using statistics to detect heterogeneity

Traditional approaches:

- Add interaction terms
- Output: Stratify the sample

Problems:

- Which heterogeneity should be pre-specified?
- P-hacking/data dredging: Report only significant heterogeneity "Exploration - which some might term data dredging - is quite different from exogenous selection of a few comparisons. Both have their place. We need to be prepared to deal with either." (Tukey, 1991)
- Overlook unexpected types of heterogeneity
- I How to stratify continuous variables?
- Solution Possible interactions > data points likely
- Spurious heterogeneity: multiple testing problem

Causal forest

- Handles large X dimension (failure of standard methods like OLS with interactions, nearest neighbor and kernel matching)
- 2 Captures possibly complex interactions in data-driven specification
- Consistently estimates full distribution of causal effects conditional on x

 \rightarrow estimate a targeting function that maps attributes x to causal effects for each individual

 \Downarrow

Causal forests (Athey et al. 19) \sim **Data-driven** way to estimate **heterogeneous** causal effects

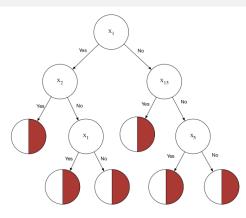
Causal tree

- In each leaf there are treated (red) and untreated (white) obs.
- Causal effect = $\bar{Y}_{red} \bar{Y}_{white}$
- Each leaf estimates:

•
$$\hat{y}(1) = \hat{E}[Y(1)|X] = \bar{Y}(1)$$

•
$$\hat{y}(0) = \hat{E}[Y(0)|X] = \bar{Y}(0)$$

• Causal effect
$$\hat{\Delta}=\bar{Y}(1)-\bar{Y}(0)$$



Causal RF (Wager and Athey 18)

- Causal RF (vs. tree) allows for personalized estimates
- \bullet Estimate $\hat{\Delta}$ in each tree with OOB obs. and take their average

Recursive Partitioning for Causal Effects

• Replace y for prediction trees with Δ :

$$\min_{j,s} \qquad \sum_{i:x_i \in R_1(j,s)} (\Delta_i - \hat{\Delta}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (\Delta_i - \hat{\Delta}_{R_2})^2$$

But we do NOT observe Δ_i

²For derivations, see, e.g., Hitsch and Misra, 2018; Athey and Imbens, 2016; Lundberg, 2017: "A tutorial in high-dimensional causal inference" (link)

Recursive Partitioning for Causal Effects

• Replace y for prediction trees with Δ :

$$\min_{j,s} \qquad \sum_{i:x_i \in R_1(j,s)} (\Delta_i - \hat{\Delta}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (\Delta_i - \hat{\Delta}_{R_2})^2$$

But we do NOT observe Δ_i Instead of MIN prediction error (unfeasible): SPLIT BY MAX VARIANCE of treatment effects ACROSS LEAVES

• Maximize size (sum of squares) of within-leaf treatment effect as²:

$$\max_{j,s} \sum_{i:x_i \in R_1(j,s)} (\hat{\Delta}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (\hat{\Delta}_{R_2})^2$$

²For derivations, see, e.g., Hitsch and Misra, 2018; Athey and Imbens, 2016; Lundberg, 2017: "A tutorial in high-dimensional causal inference" (link)

Machine Learning, Valente M.

r

Non-random treatment assignment

• What if treatment is NON-RANDOM? (self-selection)

Covariate imbalance between treated and untreated units

 $\bullet\,$ Confounders are correlated with Y and treatment assignment D

 \Rightarrow Confounding factors induce correlation between Y and D that is NOT indicative of the change in Y <u>due to</u> D (causal effect)

• Need to control for all of them, or for the conditional probability of being treated given these factors (known as propensity score, PS)

Causal RF need adjustment!

Causal forest

Idea:

- Why not running a regression within each leaf?
 ⇒ Use double ML methods to estimate Δ in each leaf
- Step 1,2: Predict outcome y and treatment variable d using x
- Residualize outcomes as $y \hat{y}$ and treatment as $d \hat{d}$
- Step 3: Predict causal effect by regressing $y \hat{y}$ on $d \hat{d}$
- Build causal forest by running step 3 regression in each node

Causal forest

Idea:

- Why not running a regression within each leaf?
 ⇒ Use double ML methods to estimate Δ in each leaf
- Step 1,2: Predict outcome y and treatment variable d using x
- Residualize outcomes as $y \hat{y}$ and treatment as $d \hat{d}$
- Step 3: Predict causal effect by regressing $y \hat{y}$ on $d \hat{d}$
- Build causal forest by running step 3 regression in each node

How to compute uncertainty in estimation?

 \Rightarrow Variance of causal effects and CI via bootstrap methods

How to obtain \hat{y} and \hat{d} for step 3?

 \Rightarrow Via two separate CART or LASSO, or whatever ML method for prediction

Causal Random Forest example with grf

Build a Causal Random Forest

```
tuned.forest <- causal_forest(X, Y, W, Est. (W = treatm. vector)</pre>
1
2
                data=waste dat.
                                         Dataset to use
3
                mtry=sqrt(ncol(X)),
                                         m, higher if X collinear
                num.trees=1000,
                                        The more, the better
4
                min.node.size=10,
5
                                         Min. nr. obs. per leaf
                ...)
6
```

Prediction

```
1 pred <- predict(tuned.forest) OOB (or specify test set)</pre>
```

Causal effects

```
1 pred$predictions[W == 1]
                          Causal effect for treated obs.
2 mean(pred$predictions[W == 1]) Avg causal effect on treated
3 sqrt(pred$variance.estimates) St. errors of causal effects
```