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Regression-based ML LASSO regression

Linear Regression with OLS

Consider the OLS coefficient vector β = (β1 . . . βp). Let’s represent the
OLS model for all i = 1, ..., n using matrices as yi = β′xi + ϵi:


y1
y2
...
yn

 =


β0
β1
β2
...
βp



1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
...

. . .
...

1 xn1 xn2 . . . xnp

+


ϵ1
ϵ2
...
ϵn


yi is the observed value of the dependent variable for observation i.

xik is the value of the independent variable k for observation i.

β0 is the intercept; β0, β2, . . . , βp are the coeff. for x1, x2, . . . , xp.

ϵi represents the error term for observation i.

Find β0, β1, . . . , βp that minβ
1
n

∑n
i=1 ϵ

2
i = (yi − β′xi)

2.
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Regression-based ML LASSO regression

Parametric methods for HD data

Find a convex criterion that can be minimized efficiently for large p

Take OLS criterion and fit a constrained problem for
β′ = (β0, β1, . . . , βp)

′ and constant c > 0:

minβ
1

n

n∑
i=1

(yi − β′xi)
2 s.t. ∥β∥ ≤ c

Put a constraint on the size of the βs (sum of their values) such that
βs kept in the model if we experience a substantial decrease in RSS

“Important” variables (leading to greater RSS reduction) will have a
bigger coefficient

(rescale variables beforehand! -mean / sd)

Three types of norm regularization: l0 norm, l1 norm, and l2 norm

∥β∥0 =
p∑

j=1

1βj ̸=0 , ∥β∥1 =
p∑

j=1

|βj | , ∥β∥22 =
p∑

j=1

β2
j

Best subset selection (∥β∥0), LASSO (∥β∥1), Ridge regression (∥β∥22)
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Regression-based ML LASSO regression

l0-penalization: Best subset selection

Consider all possible combinations of variables x (=subsets)

Run a model for each subset and select subset that yields the best fit

Computationally impractical: n. of subsets grows exponentially with x

NP hard (non-deterministic polynomial-time)

Requires a search of combinatorial order 2k, where k is number of x

With 5 predictors, evaluate models for subsets of sizes 0, 1, 2, 3, 4, 5
which corresponds to 25 = 32 combinations
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Regression-based ML LASSO regression

Alternative? Forward stepwise addition

Start with no variables in the model, test the addition of each variable using
LS criterion, add the variable whose inclusion improves the fit the most,
repeat this process until none improves the model to a stat. sign. extent

Still, computationally heavy, high risk of false positives, p-hacking
(Flom and Cassell, 2007. ”Stopping stepwise: Why stepwise and similar
selection methods are bad, and what you should use”, NESUG papers)

Unstable estimator: Changing just one data point can cause a large
change in the minimizer of RSS (Breiman, 1996)

⇒ We are unable to locate the best model (that’s why is not used!)

Machine Learning, Valente M. 7 / 36



Regression-based ML LASSO regression

l1-penalization and selection: LASSO regression

Substitute l0 by a closest convex function - l1 (Tibshirani, 96)

In penalized form (λ > 0), problem for l1 is equivalent to:

minβ
1

n

n∑
i=1

(yi − β′xi)
2 + λ∥β∥1 or minβ(Y −Xβ)2 + λ∥β∥1

Setting the penalty λ large enough induces the solution β to include
only a subset of the original predictors

LASSO is model selection device

LASSO stands for Least Absolute Shrinkage and Selection Operator
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Regression-based ML LASSO regression

LASSO induces variable selection

Support of LASSO estimator is subset of {1, . . . , p} for λ large
enough

Let A = supp(β̂) be LASSO active set (nonzero surviving coefficients)

Let sA = sign(β̂A) be the signs of active coefficients XA

FOC of LASSO criterion is: X ′
A(Y −XAβ̂A) = λsA

Solution is: β̂A =
X′

AY−λsA
X′

AXA
, β̂−A = 0

Why does LASSO induce β̂−A = 0?
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Regression-based ML LASSO regression

Intuition

minβ
1

n

n∑
i=1

(yi − β′xi)
2 + λ∥β∥1 or minβ(Y −Xβ)2 + λ∥β∥1

If λ ≈ 0, standard OLS solution (no shrinkage), all β̂ ̸= 0 (constraint
is not binding)

If λ >>> 0, some coefficients are shrunk to zero, i.e., some β̂ = 0
and some β̂ ̸= 0 (constraint becomes binding)

⇒ In general, LASSO does shrinkage for λ “high enough”
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Regression-based ML LASSO regression

LASSO in 3D

LASSO with three predictors x1, x2, x3
Diamond-shaped penalty with kinks: Some coeff = 0 (on axis)
Solution is where the OLS convex criterion is tangent to the constraint
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Regression-based ML LASSO regression

Pros and cons of LASSO

Pros: Model selection

1 The only norm regularization that offers sparsity AND convexity

2 Sparse solution has few nonzero coefficients

3 Sparse results are easier to interpret than nonsparse results

Cons: Shrinkage bias

1 Sparsity ass. needs to be plausible: Few large coefficients bounded
away from zero (LASSO) vs. Gradual decay towards zero (Ridge)

2 Model selection is always imperfect: Theoretically impossible to
distinguish coefficients that are local to zero and zero

3 LASSO regressions bias (shrink) non-zero coefficients towards zero
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Regression-based ML LASSO regression

Shrinkage bias in LASSO

LASSO does NOT have a UNIQUE solution (loss function not strictly
convex)

Among two highly correlated x1 and x2, LASSO drops one and
typically shrinks the coefficient of the other

|βLASSO
1 |+ ...+ |βLASSO

j | (sum of selected coefficients by LASSO) <

|βOLS
1 |+ ...+ |βOLS

j | (sum coefficients from OLS)

Sometimes a single selected coefficient |βLASSO
j | can be BIGGER

than |βOLS
j | because LASSO can overcompensate the shrinkage

Depending on the sign of correlation between outcome, omitted
variable, and selected variable, LASSO can inflate single coefficients
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Regression-based ML LASSO regression

Shrinkage bias

FOC of LASSO criterion is: X ′
A(Y −XAβ̂A) = λsA

Solution is: β̂A =
X′

AY−λsA
X′

AXA
, β̂−A = 0

Solution is not unique though fitted XAβ̂A are unique

Shrinkage amounts to λsA
X′

AXA

⇒ Can we take OLS solution on the active set and substract λsA
X′

AXA
?

No,
X′

AY

X′
AXA

̸= X′Y
X′X = β̂OLS

A if XA not orthogonal (correlated XA)

⇒ β̂A > β̂OLS
A (in magnitude) possible for some active regressors

⇒ However, ∥β̂A∥1 < ∥β̂OLS
A ∥1: l1-norm of LASSO (sum of all |β̂A|)

always smaller than OLS on the active set (Tibshirani, 1996)
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Ridge regression

Ridge estimator replaces l1 with l2 penalty (Hoerl and Kennard, 88)

Selection property of LASSO induced by non-smooth l1 penalty

Since l2 penalty is smooth, Ridge estimator does not select variables

Ridge reg keeps all predictors: is continuous shrinkage method

Original motivation: Use λ to make problem non-singular even if
X ′X is non-invertible due to high correlation (Hoerl and Kennard, 70)

In penalized form (λ > 0), problem for l2 is equivalent to:

minβ
1

n

n∑
i=1

(yi − β′xi)
2 + λ∥β∥22 or minβ(Y −Xβ)2 + λ∥β∥22

Solution is never sparse: all β̂ ̸= 0 (no model selection)
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Orthonormal X in Ridge regression

If X is orthonormal, then X ′X = Ip, and a closed form property exists

Let β̂OLS denote the LS solution for our orthonormal
X = (X1, . . . , Xp):

β̂RIDGE =
1

1 + 2λIp
β̂OLS

All OLS coefficients are penalized in the same way
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Correlated X in Ridge regression

If two variables are highly correlated, Ridge will tend to estimate
similar coefficients vs. LASSO will send one to zero

Two variables x, z centered and scaled (to mean zero, variance one)

Since x, z can approximately substitute each other in predicting Y,
many linear combination of x, z will be good predictors

For example: (0.2x+ 0.8z) or (0.3x+ 0.7z) or (0.5x+ 0.5z)

Ridge penalty is: β2
1 + β2

2 = {0.68, 0.58, 0.5}

LASSO penalty is: |β1|+ |β2| = 1 in all three cases

Lowest Ridge penalty (less binding given λ) is 0.5 corresponding to
assigning equal weight (coefficient) to highly correlated variables

How is the penalization split among the two variables? In such a way
to keep the total effect constant
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Ridge in 3D

Sphere-shaped penalty with no kinks: Coeff. → 0 but always ̸= 0
Solution is where the OLS convex criterion is tangent to the constraint
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Regression-based ML Ridge, Elastic Net, Bridge Regression

LASSO and Ridge penalty in higher dimensions

1 LASSO penalty spikier, volume increases with mass far from zero (in the spikes)

2 Ridge and the strange geometry of HD spheres: when adding dimensions, the
p-dimensional sphere has still to satisfy its equation β2

1 + · · ·+ β2
p = c with c ≥ 0

⇒ Equation satisfied if each coordinate (coefficient) gets a smaller share of c

⇒ HD spheres get spiky and concentrate (shrink) around the horizontal axis (equator)

⇒ The volume of the unit p-dimensional sphere goes to 0 as p increases!

Figure: LASSO vs. Ridge penalty in HD
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Elastic-net regression

Elastic-net estimator involves both l1 and l2 penalty

LASSO does not care which variable is selected among two correlated

Elastic net encourages a grouping effect, where strongly correlated
predictors tend to be in or out of the model together

Ridge penalty removes the limitation on the n. of selected variables

In penalized form (λ, µ ≥ 0), problem is equivalent to:

minβ(Y −Xβ)2 + λ∥β∥22 + µ∥β∥1

Elastic Net solution converges either to Ridge or LASSO solution
depending on relative size of λ, µ

Zou and Hastie, J. R. Statist. Soc., 2005
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Elastic net: Heuristics

Finding a set of highly correlated variables is relevant in many
settings, e.g., gene selection

Grouping effect = Using elastic net, coefficients of a group of highly
correlated variables tend to be equal

Ridge penalty pushes many of the correlated features toward each
other: In the extreme situation where some variables are exactly
identical, coefficients should be identical

Elastic Net penalty function is strictly convex (unique solution!)

Pairs of correlated variables: LASSO kicks one out, Ridge assigns
similar coeffs, Elastic Net assigns similar coeffs to selected variables
but also kicks out groups of irrelevant correlated variables

Machine Learning, Valente M. 21 / 36



Regression-based ML Ridge, Elastic Net, Bridge Regression

Improving elastic net performance

Yet, elastic net performs poorly in many settings when resulting
estimator is far from pure LASSO or Ridge

Why? Two-step procedure: First find Ridge penalty level, and then
do LASSO-type shrinkage

Double shrinkage does not help to reduce the variances much and
introduces extra bias

Rescale elastic net estimator by 1 + λ, i.e., (1 + λ)β̂

Motivation for the (1 + λ)-rescaling comes from a decomposition of
the Ridge operator (Zou and Hastie, 2005)

⇒ Rescaling the naive estimator preserves the variable selection property
and undoes shrinkage bias

⇒ Rescaled Elastic Net often outperforms LASSO and Ridge regression

Machine Learning, Valente M. 22 / 36



Regression-based ML Ridge, Elastic Net, Bridge Regression

Bridge regression

Is a generalization of both the LASSO and Ridge regression

In penalized form (λ, q > 0), problem is equivalent to:

minβ(Y −Xβ)2 + λ

p∑
j=1

|βj |q

Adaptively selects q the penalty order and level λ from data

For q ∈ (1; 2): Bridge ∼ Elastic net, but Bridge is NOT sparse

For q ∈ (0; 1]: Bridge estimators produce sparse models

Frank and Friedman, 1993; Fu, 1998
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Geometry of lq norm in 2D

Figure: Penalties of Bridge (sparse), LASSO, Ridge, Bridge (non-sparse) regressions.
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Bridge models in action

Used for prediction with irregularities in data availability

Link (”bridge”) high-frequency variables, e.g. financial data or Google
Trends, to low-frequency ones, e.g. the quarterly GDP growth

Provide nowcasting of current and short-term developments
in advance of the release of the low-frequency variable

E.g.: Nowcasting GDP growth is an important task to inform decision
makers about the current state of the economy

”Bridge Models to Forecast the Euro Area GDP”, Baffigi et al. (2004)

”Short-term Forecasts of Euro Area Real GDP Growth. An Assessment of
Real-Time Performance Based on Vintage Data”, Diron
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Regression-based ML Ridge, Elastic Net, Bridge Regression

LASSO vs. Ridge vs. Bridge vs. Elastic net

Tibshirani (1996) and Fu (1998) compared the prediction
performance of LASSO, Ridge and Bridge regression and found that
none of them uniformly dominates the other two

LASSO/Elastic net parsimonious and interpretable

Ridge outperforms LASSO when X highly correlated (Tibshirani, 1996)

Elastic net outperforms LASSO when variables have high pairwise
correlation (Zou and Hastie, 2005)

Elastic net outperforms LASSO especially when p >> n

Bridge has no theoretical justification (e.g. is (non)sparsity plausible?)
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Regression-based ML Ridge, Elastic Net, Bridge Regression

Implementation in R

R Packages

LASSO: hdm (Chernozhukov et al.), glmnet (Friedman et al.)

Ridge: glmnet

Elastic net: glmnet, elasticnet (Zou and Hastie)

Bridge: grpreg (Breheni and Zeng), bridge function in Iqa (Ulbricht)

R applications: https://www.pluralsight.com/guides/
linear-lasso-and-ridge-regression-with-r

R codes for k-fold CV of the penalty term:
https://www.datacamp.com/community/tutorials/

tutorial-ridge-lasso-elastic-net
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Technical Appendix

Orthonormal setting

Assume X orthonormal, so X ′X = Ip (uncorrelated regressors)

Solution becomes: β̂A = X ′
AY − λsA , β̂−A = 0

Three cases:

1 β̂A > 0 (sA > 0) enforces X ′
AY > 0 and X ′

AY > λ

2 β̂A < 0 (sA < 0) enforces X ′
AY < 0 and |X ′

AY | > λ

3 β̂−A = 0 when |X ′Y | < λ

⇒ LASSO does shrinkage for |X ′Y | < λ
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Technical Appendix

The geometry of LASSO

Define Q̂(β) the LS criterion (squared-error loss, RSS)

Assume the model Y = β′
0X + ϵ, but true β0 = 0 (irrelevant)

How do we penalize LS criterion to shrink β0 to zero?

Chernozhukov, V. and Hansen, C. (2013). ”Econometrics of High-Dimensional
Sparse Models”, NBER Seminar
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Technical Appendix

LASSO in 2D

Draw a 2D slice of the LS criterion Q̂(β)

 

 

 

 

 

 

 

 

Figure: Caption
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Technical Appendix

Define the supporting hyperplane (2D) of the LS criterion at β0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Caption
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Technical Appendix

Bend the hyperplane to define the penalty function
Bended hyperplane at β0 has function λ∥β∥1 with slope λ defined as
the maximum norm of subgradient of LS criterion
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Technical Appendix

Select λ to dominate the norm for all β0 values
Penalty function has to be steeper than supporting hyperplane

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Caption
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Technical Appendix

Sum up the LS function and the penalty function (= constrained LS)
Q̂(β) + λ∥β∥1 (in red) is uniquely minimized at zero (β0 = 0)

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Caption
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Technical Appendix

LASSO: Heuristics

Due to kink in the penalty, LASSO ”zeros out” irrelevant regressors

When p > 1, penalty function has a diamond-shaped geometry

Increasing λ makes the penalty function ”spikier”
⇒ More likely to hit the LS criterion on coefficient axis
⇒ Heavier model selection with more coefficients shrunk to zero

Data-driven choice of λ s.t. P (λ > ∥∇Q̂(β0)∥∞) → 1
(Belloni et al., Econometrica, 2012; Belloni and Chern., Ann. Statist, 2011)
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