Nonperturbative QCD 2016 - Sevilla, October 17, 2016

Mesonic Resonances with Charm & Beauty

Susana Coito

Institute of Modern Physics, Lanzhou, China Jan Kochanowski University, Kielce, Poland

Collaborators: George Rupp, Eef van Beveren, Xiang Liu, Francesco Giacosa

I. Introduction III. RSE with Harmonic Oscillator II. The RSE Model IV. RSE with Funnel V. Summary

I. Introduction

Mesons with Open-Beauty: Experimental Status (average values)

J^P	bn	J [₽]	bs	$\int J^P$	bc
0-	В	0-	Bs	0-	$B_{c}[6276]$
1^{-}	<i>B</i> *	1-	B_s^*		
0+	?	0+	?		
1^{+} ?	<i>B</i> ₁ (5721), 5726 – <i>i</i> 14	1+ ?	$B_{s1}(5830)$		
2^{+} ?	<i>B</i> ₂ *(5747), 5740 - <i>i</i> 12	2 ⁺ ?	<i>B</i> _{s2} (5840)		
?	B(5732), 5698 – <i>i</i> 64	?	B _s (5850), 5853 – i23	?	6842
?	<i>B</i> (5840), 5863 – <i>i</i> 63				
?	B(5970), 5971 – <i>i</i> 40				

- What are the quantum numbers of the resonances that have been seen?
- Where are the radial excitations?

Mesons with Open-Charm: Experimental Status (average values)

J^P	сп	$\int J^P$	CS
0-	D	0-	Ds
1^{-}	<i>D</i> *	1-	D_s^*
1^{-}		1-	$D_{s1}^{*}(2700)$, 2708 — <i>i</i> 60
1^{-}		1-	$D_{s1}^{*}(2860)$, 2859 — i80
0+	$D_0^*(2400)$	0+	$D_{s0}^{*}(2317)$
1^+	$D_1(2420), D_1(2430)$	1+	$D_{s1}(2460), D_{s1}(2536)$
2 ⁺	$D_2^*(2460)$	2+	$D_{s2}^{*}(2573)$
3-	D(2750), 2763 — i32	3-	<i>D</i> _{s3} (2860), 2861 – <i>i</i> 26
?	D(2550), 2564 — <i>i</i> 67	?	<i>D</i> _s (3040), 3044 - <i>i</i> 120
?	D(2600), 2617 – <i>i</i> 48		
?	D(2640), 2637 – <i>i</i> < 15		
?	D(2740), 2737 — <i>i</i> 36		
?	D(3000), 2990 — <i>i</i> 70		
			1

• General motivation : To understand the underlying confining potential

Unquenching in the models

Quenched models, e.g., Godfrey-Isgur model, assume meson spectrum as a bare spectrum of the underlying Cornell potential (i.e. Coulomb + linear term), with spin-orbit corrections, without considering any other relevant hadronic degrees of freedom.

However experimental data reveals many nonperturbative effects, namely deformation of Breit-Wigner line shapes and mass-energies that are very different from any underlying spectrum.

Unquenched approaches consider that resonances are not pure states, instead they are strongly coupled to other important components of the hadronic sea and to the nearby decay channels.

What is a "conventional" meson?

II. Spectroscopy with Potential Models: The Resonance-Spectrum-Expansion (RSE)

Elastic-Scattering: $AB \rightarrow CD$, A, B, C, D are strongly interacting objects. Scattering Theory - Born expansion:

In the present model model one considers:

- A, B, C, D are mesonic resonances M.
- a whole spectrum of confined $q\bar{q}$ states.
- decays obey the the Okubo-Zweig-Iizuka OZI allowed rule.

- transition mechanism, i.e., $q\bar{q}$ annihilation/creation at the vertices according to the ${}^{3}P_{0}$ model.

One defines an effective potential, in momentum space:

$$V_{ij}(p_i, p'_j; E) = \lambda^2 j^i_{L_i}(p_i a) \mathcal{R}_{ij}(E) j^j_{L_i}(p'_j a)$$

Spherical Bessel function ⇔ spherical delta function: string breaking

Free parameters:

- a "string-breaking" distance
- λ global coupling

The RSE formula:

$$\mathcal{R}_{ij} = \sum_{l_c,S} \sum_{n=0}^{\infty} \frac{g_{nl_cS}^i g_{nl_cS}^j}{E - E_n^{(l_c)}}$$

Partial coupling constants $g_{nl_cS}^i$, i, j - decay channels

the g's are computed within the ${}^{3}P_{0}$ model using expansions on a harmonic-oscillator basis

 $g_n = r_n/4^n$, where r_n is a polynomial - rapid convergence of the series.

Separable potential, Lippmann-Schwinger equation is evaluated in closed form. Transition matrix:

$$T_{ij}^{L_i,L_j}(p_i,p_j';E) = -2a\lambda^2 \sqrt{\mu_i p_i} j_{L_i}^i(p_i a) \sum_{m=1}^N \mathcal{R}_{im} \{ [1 - \Omega \mathcal{R}]^{-1} \}_{mj} j_{L_j}^j(p_j' a) \sqrt{\mu_j p_j'},$$

Loop function:

$$\Omega_{ij}(k_j) = -2ia\lambda^2 \mu_j k_j j^j_{L_j}(k_j a) h^{(1)j}_{L_j}(k_j a) \delta_{ij}$$

Manifest unitarity of the scattering matrix

$$S = 1 + 2iT$$

Resonances and bound states are poles of the scattering matrix

(found in the 2nd Riemann Sheet with relation to the nearest threshold)

The transition operator T, in term of a complex variable z, is given by

$$T(z) = V + VG_0(z)T$$

or

$$\langle ec{p}|T|ec{p'}
angle = \langle ec{p}|V|ec{p'}
angle + \int d^3k' \int d^3k \, \langle ec{p}|V|ec{k'}
angle \langle ec{k'}|G_0(z)|ec{k}
angle \langle ec{k}|T(z)|ec{p'}
angle ,$$

where the Green function G_0 may be expressed as

 $G_0(z) = (z - H_0)^{-1}.$

The potential V is spherically symmetric and given by

$$V(\vec{r},\vec{r'}) = \delta^{(3)}(\vec{r}-\vec{r'})V(r),$$

which reads, in momentum space,

$$V(\vec{k},\vec{k'}) = \frac{1}{2\pi^2} \sum_{l=0}^{\infty} (2l+1) P_l(\hat{k}\cdot\hat{k'}) \int_0^\infty r^2 dr V(r) j_l(kr) j_l(k'r).$$

III. RSE with the Harmonic-Oscillator confining potential:

$$\mathcal{R}_{ij} = \sum_{l_c,S} \sum_{n=0}^{\infty} \frac{g_{nl_cS}^i g_{nl_cS}^J}{E - E_n^{(l_c)}}$$

$$E_n = m_q + m_{\bar{q}} + \omega(2n + l_c + 3/2)$$

Parameters (MeV), cf. PRD 27, 1527 (1983). For m_b cf. EPJ 32, 493 (2004):

$$\omega = 190, \quad m_n = 406, \quad m_s = 508, \quad m_c = 1562, \quad m_b = 4877$$

- Allows analytical solutions of the Schrödinger equation.
- Although it is not QCD inspired, it is a good phenomenological potential for strong interactions.

Axials with charm-light flavor (cn and cs) - PV and VV channels

	Channel	Th (MeV)	l	$g_{1^{++}}^{2(n=0)}$	$g_{1^{+-}}^{2(n=0)}$						
1	$D^*\pi$	2146	0	0.02778	0.01389						
2	$D^*\pi$	2146	2	0.03472	0.06944		Channel		0	2(n=0)	2(n=0)
3	$D^*\eta$	2556	0	0.00586	0.00293		Channel	Th (MeV)	e	B ₁₊₊	$B_{1^{+-}}$
4	$D^*\eta$	2556	2	0.00733	0.01465	1	D^*K	2504	0	0.03704	0.01852
5	D_s^*K	2608	0	0.01852	0.00926	2	D^*K	2504	2	0.04630	0.09259
6	D_s^*K	2608	2	0.02315	0.04630	3	$D_s^*\eta$	2660	0	0.00680	0.00340
7	$D\rho$	2643	0	0.02778	0.01389	4	$D_s^*\eta$	2660	2	0.00850	0.01700
8	$D\rho$	2643	2	0.03472	0.06944	5	DK^*	2761	0	0.03704	0.01852
9	$D\omega$	2650	0	0.00926	0.00463	6	DK^*	2761	2	0.04630	0.09259
10	$D\omega$	2650	2	0.01157	0.02315	7	D^*K^*	2902	0	0	0.01852
11	$D^*\rho$	2784	0	0	0.01389	8	D^*K^*	2902	2	0.13889	0.09259
12	$D^*\rho$	2784	2	0.10417	0.06944	9	$D_s\phi$	2988	0	0.01852	0.00926
13	$D^*\omega$	2791	0	0	0.00463	10	$D_s\phi$	2988	2	0.02315	0.04630
14	$D^*\omega$	2791	2	0.03472	0.02315	11	$D_s^*\eta'$	3069	0	0.01718	0.00586
15	D₅K*	2862	0	0.01852	0.00926	12	$D_s^*\eta'$	3069	2	0.01465	0.02930
16	D₅K*	2862	2	0.02315	0.04630	13	$D_s^*\phi$	3132	0	0	0.00926
17	$\eta' D^*$	2996	0	0.00341	0.00170	14	$D_s^*\phi$	3132	2	0.06944	0.04630
18	$\eta' D^*$	2996	2	0.00425	0.00850						
19	$D_s^*K^*$	3006	0	0	0.00926						
20	$D_s^*K^*$	3006	2	0.06944	0.04630						

 $E_{n=0,1}$ (MeV): (cn) 2433 2813 (cs) 2535 2915

		RSE (HO)†	Exp Data	Quenched Models ‡
cn	$1^{3}P_{1}, 1^{1}P_{1}$	2439 — <i>i</i> 4	2423 — <i>i</i> 13	$(1^{3}P_{1})$ 2.39-2.44
$r_0 = 3.40 \text{ GeV}^{-1}$	$1^{3}P_{1}, 1^{1}P_{1}$	2432 — <i>i</i> 192	2427 — <i>i</i> 192	(1^1P_1) 2.41-2.49
$\lambda = 1.30$	$2^{3}P_{1}, 2^{1}P_{1}$	2814 — <i>i</i> 8		$(2^{3}P_{1})$ 2.79-3.00
	$2^{3}P_{1}, 2^{1}P_{1}$	2753 — <i>i</i> 48	2737 — <i>i</i> 36 ?	(2^1P_1) 2.80-3.05
cs	$1^{3}P_{1}, 1^{1}P_{1}$	2457	2460	$(1^{3}P_{1})$ 2.46-2.54
$r_0{=}3.12~{\rm GeV}^{-1}$	$1^{3}P_{1}, 1^{1}P_{1}$	2541 — <i>i</i> 6	2535	(1^1P_1) 2.51-2.61
$\lambda {=}1.19$	$2^{3}P_{1}, 2^{1}P_{1}$	2915 — <i>i</i> 7		$(2^{3}P_{1})$ 2.93-3.11
	$2^{3}P_{1}, 2^{1}P_{1}$	2862 — <i>i</i> 26		(2^1P_1) 2.94-3.17
	1			

† in PRD 84, 094020 (2011) ‡ cf. EPJC 71, 1585 (2011)

$$r_{0f} = \sqrt{\frac{\mu_i}{\mu_f}} r_{0i}, \quad \lambda_f = \sqrt{\frac{\mu_i}{\mu_f}} \lambda_i, \quad i, f = \bar{q}q$$

Axials with beauty-light flavor (bn and bs) - PV and VV channels

	Channel	Th (MeV)	l	$g_{1^{++}}^{2(n=0)}$	$g_{1^{+-}}^{2(n=0)}$						
1	$B^*\pi$	5463	0	0.02778	0.01389						
2	$B^*\pi$	5463	2	0.03472	0.06944		Channel	Th (MeV)	ℓ	$g_{1^{++}}^{2(n=0)}$	$g_{1+-}^{2(n=0)}$
3	$B^*\eta$	5873	0	0.00586	0.00293					-	
4	$B^*\eta$	5873	2	0.00733	0.01465	1	B^*K	5821	0	0.03704	0.01852
5	B_s^*K	5911	0	0.01852	0.00926	2	B^*K	5821	2	0.04630	0.09259
6	B_s^*K	5911	2	0.02315	0.04630	3	$B_s^*\eta$	5963	0	0.00680	0.00340
7	Βρ	6055	0	0.02778	0.01389	4	$B_s^*\eta$	5963	2	0.00850	0.01700
8	Βρ	6055	2	0.03472	0.06944	5	BK^*	6173	0	0.03704	0.01852
9	$B\omega$	6062	0	0.00926	0.00463	6	BK^*	6173	2	0.04630	0.09259
10	$B\omega$	6062	2	0.01157	0.02315	7	B^*K^*	6219	0	0	0.01852
11	$B^*\rho$	6101	0	0	0.01389	8	B^*K^*	6219	2	0.13889	0.09259
12	$B^*\rho$	6101	2	0.10417	0.06944	9	$B_s^* \eta'$	6373	0	0.01172	0.00926
13	$B^*\omega$	6108	0	0	0.00463	10	$B_s^* \eta'$	6373	2	0.01465	0.04630
14	$B^*\omega$	6108	2	0.03472	0.02315	11	$B_s\phi$	6386	0	0.01852	0.00586
15	B₅K*	6261	0	0.01852	0.00926	12	$B_s\phi$	6386	2	0.02315	0.02930
16	B₅K*	6261	2	0.02315	0.04630	13	$B_s^*\phi$	3132	0	0	0.00926
17	$\eta' B^*$	6283	0	0.00341	0.00170	14	$B_s^*\phi$	3132	2	0.06944	0.04630
18	$\eta' B^*$	6283	2	0.00425	0.00850						
19	$B_s^*K^*$	6309	0	0	0.00926						
20	$B_s^*K^*$	6309	2	0.06944	0.04630						

 $E_{n=0,1}$ (MeV): (bn) 5758 6138 (bs) 5860 6240

		RSE (HO)†	Exp Data	Quenched Models ‡
bn $r_0=3.15~{ m GeV}^{-1}$ $\lambda=1.21$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5703 — <i>i</i> 28 5755 — <i>i</i> 0.8 6129 — <i>i</i> 7 6494 — <i>i</i> 12	$5726 \pm 2 - i(15 \pm 2)$	$(1^{3}P_{1})$ 5.70-5.78 $(1^{1}P_{1})$ 5.74-5.78
bs $r_0{=}2.85~{\rm GeV}^{-1}$ $\lambda{=}1.09$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5784 5856 — <i>i</i> 1 6229 — <i>i</i> 6 6248 — <i>i</i> 267	$5750(17)(19) \text{ (lattice}^*)$ $5828.6 \pm 0.3 - i(0.3 \pm 0.3)$	(1^1P_1) 5.81-5.86 (1^3P_1) 5.84-5.87

† cf. EPJC 32, 493 (2004), * PLB 750, 17 (2015) ‡ cf. PRD 89, 054026 (2014)

Vectors with charm-light flavor (cn and cs) - PP, PV and VV channels

	Ch	Th (MeV)	ℓ,s	$g_{1^{-}(\ell=0)}^{2(n=0)}$	$g_{1^{-}(\ell=2)}^{2(n=0)}$						
1 2	$D\pi$ $D^*\pi$	2005 2146	1,0 1,1	0.02083	0.00694 0.00694		Ch	Th (MeV)	<i>ℓ</i> , s	$g_{1^{}(\ell=0)}^{2(n=0)}$	$g_{1^{}(\ell=2)}^{2(n=0)}$
3	$D\eta$	2415	1,0	0.00437	0.00146	1	DK	2363	1,0	0.02778	0.00926
4	$D_s K$	2464	1,0	0.01389	0.00463	2	D^*K	2504	1,1	0.11111	0.00926
5	$D\eta$	2557	1,1	0.01749	0.00140	3	$D_s\eta$	2516	1,0	0.00515	0.00172
7	D _s K	2000	1,1	0.05550	0.00403	4	$D_s^*\eta$	2660	1,1	0.02058	0.00172
0	$D\rho$	2043	1,1	0.00333	0.00094	5	DK*	2761	1,1	0.11111	0.00926
0	D^*	2030	1,1	0.02770	0.00231	6	D*K*	2903	1,0	0.00926	0.00309
9 10	$D^* \rho$	2784	1.0	0.13889	0.00231	7	D*K*	2903	1,2	0.18519	0.00062
11	$D^*\omega$	2791	1.0	0.00231	0.00077	8	$D_s \eta'$	2926	1,0	0.00874	0.00291
12	$D^*\omega$	2791	1.2	0.04630	0.00015	9	$D_s\phi$	2988	1,1	0.05556	0.00463
13	Dn'	2825	1.0	0.00257	0.00086	10	$D_s^*\eta'$	3070	1,1	0.03498	0.00291
14	D _s K*	2862	1,1	0.05556	0.00463	11	$D_s^*\phi$	3132	1,0	0.00463	0.00154
15	$D^*\eta'$	2966	1,1	0.01029	0.00086	12	$D_s^*\phi'$	3132	1,2	0.09259	0.00031
16	$D_s^* \dot{K}^*$	3006	1,0	0.00463	0.00154						
17	$D_s^*K^*$	3006	1,2	0.09259	0.00031						

$E_{n=0,1}$ (MeV): (cn) 2253 2633 (bs) 2355 2735

		RSE (HO)†	Experimental Data	Quenched Models ‡
cn	1 <i>S</i>	2023	2009	(1S) 2.01-2.04
$r_0{=}3.40~{\rm GeV}^{-1}$	2 <i>S</i> , 1 <i>D</i>	2491 – <i>i</i> 10		(2S) 2.60-2.69
$\lambda =$ 5.45	2 <i>S</i> , 1 <i>D</i>	2577 — <i>i</i> 12		(1D) 2.71-2.82
CS	1 <i>S</i>	2112	2112	(1S) 2.11-2.13
$r_0{=}3.12~{ m GeV}^{-1}$	2 <i>S</i> , 1 <i>D</i>	2595 — <i>i</i> 7	2708 — <i>i</i> 60	(2S) 2.71-2.81
$\lambda = 5.0$	2 <i>S</i> , 1 <i>D</i>	2686 — <i>i</i> 11	2859 — <i>i</i> 80	(1D) 2.80-2.91
cn $r_0=3.40 \text{ GeV}^{-1}$ $\lambda=5.45$ cs $r_0=3.12 \text{ GeV}^{-1}$ $\lambda=5.0$	15 2S, 1D 2S, 1D 15 2S, 1D 2S, 1D	2023 2491 - <i>i</i> 10 2577 - <i>i</i> 12 2112 2595 - <i>i</i> 7 2686 - <i>i</i> 11	2009 2112 2708 - <i>i</i> 60 2859 - <i>i</i> 80	(1S) 2.01-2.04 (2S) 2.60-2.69 (1D) 2.71-2.82 (1S) 2.11-2.13 (2S) 2.71-2.81 (1D) 2.80-2.91

† for cs cf. PRL 93, 202001 (2004) ‡ cf. EPJC 71, 1585 (2011)

Vectors with beauty-light flavor (bn and bs) - PP, PV and VV channels

	Ch	Th (MeV)	ℓ, s	$g_{1^{-}(\ell=0)}^{2(n=0)}$	$g_{1^{-}(\ell=2)}^{2(n=0)}$						
1 2 3	Βπ Β*π Βη	5417 5463 5827	1,0 1,1 1,0	0.02083 0.08333 0.00437	0.00694 0.00694 0.00146		Ch	Th (MeV)	l, s	$g_{1^{}(\ell=0)}^{2(n=0)}$	$g_{1^{}(\ell=2)}^{2(n=0)}$
4	B _s K	5862	1,0	0.01389	0.00463	1 2	BK B*K	5775 5821	1,0 1,1	0.02778	0.00926
5	В‴η В ≰К	5873 5911	1,1 1,1	0.01758	0.00146	3	$B_s \eta$	5915	1,0	0.00510	0.00170
7	Βρ	6055	1,1	0.08333	0.00694	4 5	Bs η BK*	5963 6173	1,1 1,1	0.02040	0.00170
8 9	$B\omega B^*\rho$	6062 6101	1,1	0.02778	0.00231	6	B* K*	6219	1,0	0.00926	0.00309
10	Β*΄ρ Β*	6101	1,2	0.13889	0.00046	7 8	B*K* B _s η′	6219 6324	1,2 1,0	0.18519 0.00879	0.00062
11 12	$B^*\omega$	6108	1,0	0.00231	0.00077	10	$B_s^* \eta'$	6373	1,1	0.03515	0.00293
13	Βη' Ρ κ*	6237	1,0	0.00257	0.00086	9 11	$B_s^* \phi$	6435	1,1	0.05550	0.00463
14	Β _s π Β*η′	6283	1,1	0.05550	0.00403	12	$B_s^* \phi'$	6435	1,2	0.09259	0.00031
16 17	B₅ K* B₅ K*	6309 6309	1,0 1,2	0.00463 0.09259	0.00154 0.00031						

 $E_{n=0,1}$ (MeV): (bn) 5568 5948 (bs) 5670 6050

		RSE (HO)	Exp Data	Quenched Models \ddagger
bn	1 <i>S</i>	5382	5325	(1S) 5.32-5.37
$r_0{=}3.15~{\rm GeV}^{-1}$	2 <i>S</i> , 1 <i>D</i>	5811 — <i>i</i> 7	5698 — <i>i</i> 64 ?	(2S) 5.90-5.94
$\lambda{=}5.05$	2 <i>S</i> , 1 <i>D</i>		5863 — <i>i</i> 63 ?	(1D) 6.02-6.12
		5899 — <i>i</i> 9	5971 — <i>i</i> 40 ?	
bs	1 <i>5</i>	5484	5415	(1S) 5.41-5.45
$r_0 = 2.85 \text{ GeV}^{-1}$	2 <i>S</i> , 1 <i>D</i>	5914 — <i>i</i> 4		(2S) 5.99-6.02
λ =4.57	2 <i>S</i> , 1 <i>D</i>	6008 — <i>i</i> 8		(1D) 6.12-6.21
	1	1	1	

‡ cf. PRD 89, 054026 (2014)

Scalars with charm-light flavor (cn and cs) - PP and VV channels

	Channel	Th (MeV)	ℓ	$g_{0^{++}}^{2(n=0)}$					
1	Dπ	2363	0	0.02083		Channel	Th (MeV)	l	$g_{0^{++}}^{2(n=0)}$
2	$D\eta$	2415	0	0.00439	1	אס	2262	0	0 00770
3	D _e K	2464	0	0.01389	1		2303	0	0.02110
1		2784	0	0 00604	2	$D_s\eta$	2516	0	0.00510
4	Dp	2704	0	0.00094	3	D^*K^*	2903	0	0.00926
5	$D^*\rho$	2784	2	0.13889	1	D* K*	2003	2	0 18510
6	$D^*\omega$	2791	0	0.00231	-		2905	2	0.10319
7	D*w	2701	2	0.04630	5	$D_s \eta'$	2926	0	0.00879
,		2751	2	0.04050	6	$D_s^*\phi$	3132	0	0.00463
8	$D\eta'$	2825	0	0.00255	7	D* d	3132	2	0 00250
9	$D_s^*K^*$	3006	0	0.00463	'	$D_{s} \varphi$	5152	- 1	0.05255
10	$D_s^*K^*$	3006	2	0.09259					

 $E_{n=0,1}$ (MeV): (cn) 2443 2823 (bs) 2545 2925

		RSE (HO)†	Exp Data	Quenched Models ‡
cn	1 <i>P</i>	2171 — <i>i</i> 95	2335 — <i>i</i> 124	(1P) 2.25-2.41
$r_0{=}2.68~{ m GeV}^{-1}$	2 <i>P</i>	2735 — <i>i</i> 27		(2P) 2.75-2.95
λ =3.82	2 <i>P</i> (dyn)	2708 — i222		
CS	1 <i>P</i>	2317	2318	(1P) 2.32-2.51
$r_0 = 2.46 \text{ GeV}^{-1}$	2 <i>P</i>	2841 — <i>i</i> 24		(2P) 2.83-3.07
$\lambda = 3.50$	2 <i>P</i> (dyn)	2774 — <i>i</i> 232		

† cf. PRL 97, 202001 (2006), PRL 91, 012003 (2003), EPJA 31, 698 (2007).
‡ cf. EPJC 71, 1585 (2011)

Scalars with beauty-light flavor (bn and bs) - PP and VV channels

	Channel	Th (MeV)	l	$g_{0^{++}}^{2(n=0)}$					
1	Βπ	5417	0	0.02083		Channel	Th (MeV)	l	$g_{0^{++}}^{2(n=0)}$
2	$B\eta$	5827	0	0.00439	1	BK	5775	0	0 02778
3	B₅K	5862	0	0.01389	2	Bn	5015	0	0.00510
4	$B^*\rho$	6101	0	0.00694	2	$D_{S}\eta$	5915		0.00510
5	B*0	6101	2	0 13889	3	BK	6219	0	0.00926
6	D*	6100	6	0.00021	4	B^*K^*	6219	2	0.18519
0	Бω	0100	0	0.00231	5	$B_{\epsilon}n'$	6324	0	0.00879
7	$B^*\omega$	6108	2	0.04630	6	, B*∆	6435	0	0.00463
8	$B\eta'$	6237	0	0.00255	-	$D_s \varphi$	0435	0	0.00403
9	B _s [*] K [*]	6309	0	0.00463	($B_s^*\phi$	6435	2	0.09259
10	$B_s^*K^*$	6309	2	0.09259					

$E_{n=0,1}$ (MeV): (bn) 5758 6138 (bs) 5670 6050

		RSE (HO)	Experimental Data	Quenched Models ‡
bn	1 <i>P</i>	5541 — <i>i</i> 57		(1P) 5.71-5.76
$r_0{=}2.49~{ m GeV}^{-1}$	2 <i>P</i>	6044 — <i>i</i> 26		(2P) 6.16-6.22
$\lambda = 3.54$				
bs	1 <i>P</i>	5698	5711(13)(19) (lattice†)	(1P) 5.80-5.83
$r_0{=}2.24~{ m GeV}^{-1}$	2 <i>P</i>	6151 — <i>i</i> 27		(2P) 6.28-6.32
$\lambda = 3.20$				

† arXiv: 1501.01646 [hep-lat] ‡ cf. PRD 89, 054026 (2014)

IV. Unquenching the Funnel (Coulomb + linear) Potential

Motivation for the Cornell potential:

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + \sigma r$$

Coulombic term (small distances): coulombic one-gluon-exchange between qq, qg, and gg in perturbative QCD.

Linear term: inferred from the lattice gauge theory at large distances.

The Funnel potential in the RSE:

$$\mathcal{R}_{ij} = \sum_{l_c, S} \sum_{n=0}^{\infty} \frac{g_{nl_c S}^i g_{nl_c S}^j}{E - E_n^{(l_c)}}$$

- Choose the appropriate energy spectrum
- Compute the appropriate partial coupling constants g

V. Summary

- Relevance of meson spectroscopy to understand the confining potential
- Relevance of the unquenching, namely of coupled-channel effects, to understand resonances
- The RSE model using an Harmonic Oscillator confining potential leads to different predictions than quenched models using the Cornell potential
- The unquenching of the Cornell potential, namely by employing the RSE model, may lead to different results than the traditional quenched approaches, that are typically altered by screened potentials or spin-orbit corrections.

· .