Extending a Generalized Parton Distribution from DGLAP to ERBL (Preliminary results!) From an Overlap of Light-cone Wave-functions to a Double Distribution

Nabil Chouika

Irfu/SPhN, CEA Saclay - Université Paris-Saclay

NPQCD 2016, Seville, October 18th 2016

Extending a GPD from DGLAP to ERBL

NPQCD16 18/10/16 1 / 28

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Outline			

Introduction to Generalized Parton Distributions

- Why Generalized Parton Distributions?
- Definition and properties

Overlap and Double Distribution representations of GPDs

- Overlap of Light-cone wave functions
- Double Distributions

Is From an Overlap of LCWFs to a Double Distribution

- Inversion of Incomplete Radon Transform
- Results

Conclusion

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Outline			

1 Introduction to Generalized Parton Distributions

- Why Generalized Parton Distributions?
- Definition and properties

Overlap and Double Distribution representations of GPDs

- Overlap of Light-cone wave functions
- Double Distributions

From an Overlap of LCWFs to a Double Distribution Inversion of Incomplete Radon Transform

Results

Conclusion

Introduction to GPDs

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Experimental access (example: DVCS)

Deeply Virtual Compton Scattering channel of photon electroproduction.

$$\Delta = P_2 - P_1 \ , \ t = \Delta^2 < 0$$

$$Q^2 = -q_1^2 > 0$$

$$P = rac{1}{2} \left(P_1 + P_2
ight) \; , \; \xi = -rac{\Delta^+}{2 \, P^+}$$

Nabil Chouika

Introduction to GPDs $\bullet \circ \circ \circ \circ$

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Experimental access (example: DVCS)

Compton Form Factors: (Belitsky et al., 2002)

$$\mathcal{F}\left(\xi, t, Q^{2}\right) = \int_{-1}^{1} \mathrm{d}x \, C\left(x, \xi, \alpha_{S}\left(\mu_{F}\right), \frac{Q}{\mu_{F}}\right) F\left(x, \xi, t, \mu_{F}\right), \qquad (1)$$

where $F \in \{H, E, \tilde{H}, \tilde{E}, ...\}$ is a Generalized Parton Distribution.

Introduction to GPDs 0●000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Nucleon imagi	ng		

• Correlation of the longitudinal momentum and the transverse position of the partons inside the hadron.

Introduction to GPDs ○●○○○	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Nucleon imagin	ng		

- Correlation of the longitudinal momentum and the transverse position of the partons inside the hadron.
- Probability density (Fourier transform of GPD): (Burkardt, 2000)

$$q\left(x,\vec{b_{\perp}}\right) = \int \frac{\mathrm{d}^{2}\vec{\Delta_{\perp}}}{\left(2\pi\right)^{2}} e^{-i\vec{b_{\perp}}\cdot\vec{\Delta_{\perp}}} H^{q}\left(x,0,-\vec{\Delta_{\perp}}^{2}\right) \,. \tag{2}$$

Introduction to GPDs ○●○○○	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Nucleon imagi	ng		

- Correlation of the longitudinal momentum and the transverse position of the partons inside the hadron.
- Probability density (Fourier transform of GPD): (Burkardt, 2000)

$$q\left(x,\vec{b_{\perp}}\right) = \int \frac{\mathrm{d}^{2}\vec{\Delta_{\perp}}}{\left(2\pi\right)^{2}} e^{-i\vec{b_{\perp}}\cdot\vec{\Delta_{\perp}}} H^{q}\left(x,0,-\vec{\Delta_{\perp}}^{2}\right) .$$
(2)

Figure: Hadron tomography.

Introduction to GPDs ००●००	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Nucleon spin			

• Ji's decomposition of the nucleon spin: (Ji, 1997)

$$\frac{1}{2} = \sum_{q} J^q + J^g \,. \tag{3}$$

= 9QC

Introduction to GPDs 00●00	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Nucleon spin			

• Ji's decomposition of the nucleon spin: (Ji, 1997)

$$\frac{1}{2} = \sum_{q} J^q + J^g \,. \tag{3}$$

• Ji's sum rule:

$$J^{q} = \frac{1}{2} \int_{-1}^{1} x \left[H^{q} \left(x, \xi, 0 \right) + E^{q} \left(x, \xi, 0 \right) \right] dx$$

$$= \frac{1}{2} \int_{0}^{1} x \left[q \left(x \right) + \bar{q} \left(x \right) \right] dx + \frac{1}{2} \int_{-1}^{1} x E^{q} \left(x, 0, 0 \right) dx$$

$$= \frac{1}{2} \Delta q + L^{q}. \qquad (4)$$

1.5

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Definition of G	iPDs		

$$F^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P_{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P_{1} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0},$$
(5)

三日 のへの

Introduction to GPDs ०००●०	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Definition of G	iPDs		

$$F^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P_{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P_{1} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0},$$
(5)

with:

$$F^{q} = \frac{1}{2P^{+}} \left(\bar{u}(P_{2}) \gamma^{+} u(P_{1}) H^{q} + \frac{i\Delta_{\nu}}{2m_{N}} \bar{u}(P_{2}) \sigma^{+\nu} u(P_{1}) E^{q} \right).$$
(6)

< A

三日 のへの

Introduction to GPDs ०००●०	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Definition of G	iPDs		

$$F^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P_{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P_{1} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0},$$
(6)

with:

$$F^{q} = \frac{1}{2P^{+}} \left(\bar{u}(P_{2}) \gamma^{+} u(P_{1}) H^{q} + \frac{i\Delta_{\nu}}{2m_{N}} \bar{u}(P_{2}) \sigma^{+\nu} u(P_{1}) E^{q} \right).$$
(7)

< A

三日 のへの

Introduction to GPDs ○○○●○	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Definition of G	iPDs		

$$F^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P_{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P_{1} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0},$$
(6)

with:

$$F^{q} = \frac{1}{2P^{+}} \left(\bar{u}(P_{2}) \gamma^{+} u(P_{1}) H^{q} + \frac{i\Delta_{\nu}}{2m_{N}} \bar{u}(P_{2}) \sigma^{+\nu} u(P_{1}) E^{q} \right).$$
(7)

• Similar with \tilde{H}, \tilde{E} and gluons...

Introduction to GPDs ०००●०	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Definition of G	iPDs		

$$F^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P_{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P_{1} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0},$$
(6)

with:

$$F^{q} = \frac{1}{2P^{+}} \left(\bar{u}(P_{2}) \gamma^{+} u(P_{1}) H^{q} + \frac{i\Delta_{\nu}}{2m_{N}} \bar{u}(P_{2}) \sigma^{+\nu} u(P_{1}) E^{q} \right).$$
(7)

- Similar with \tilde{H}, \tilde{E} and gluons...
- Link to PDFs and Form Factors:

$$\int \mathrm{d}x \, H^q(x,\xi,t) = F_1^q(t) \quad , \quad \int \mathrm{d}x \, E^q(x,\xi,t) = F_2^q(t) \; , \quad (8)$$

$$H^{q}(x,0,0) = \theta(x) q(x) - \theta(-x) \bar{q}(-x) .$$
 (9)

Introduction to GPDs $\circ\circ\circ\circ\bullet$

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Theoretical constraints on GPDs

Main properties:

• Support: $x, \xi \in [-1, 1]$.

< 行い

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Theoretical constraints on GPDs

Main properties:

- Support: $x, \xi \in [-1, 1]$.
- Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^m \, H(x,\xi,t) = \text{Polynomial in } \xi \,. \tag{10}$$

< 行い

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Theoretical constraints on GPDs

Main properties:

- Support: $x, \xi \in [-1, 1]$.
- Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^m \, H(x,\xi,t) = \text{Polynomial in } \xi \,. \tag{10}$$

From Lorentz invariance.

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Theoretical constraints on GPDs

Main properties:

- Support: $x, \xi \in [-1, 1]$.
- Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^m \, H(x,\xi,t) = \text{Polynomial in } \xi \,. \tag{10}$$

- From Lorentz invariance.
- Positivity: (Pire et al., 1999)

$$H^{q}(x,\xi,t) \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}.$$
 (11)

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Theoretical constraints on GPDs

Main properties:

- Support: $x, \xi \in [-1, 1]$.
- Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^m \, H(x,\xi,t) = \text{Polynomial in } \xi \,. \tag{10}$$

- From Lorentz invariance.
- Positivity: (Pire et al., 1999)

$$H^{q}(x,\xi,t) \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}.$$
(11)

• Cauchy-Schwarz theorem in Hilbert space.

Nabil Chouika

Extending a GPD from DGLAP to ERBL

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion

Introduction to Generalized Parton Distributions

- Why Generalized Parton Distributions?
- Definition and properties

Overlap and Double Distribution representations of GPDs

- Overlap of Light-cone wave functions
- Double Distributions

From an Overlap of LCWFs to a Double Distribution

- Inversion of Incomplete Radon Transform
- Results

Jutline

Conclusion

Introduction to GPDs

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Light-cone wave functions (LCWFs)

(Brodsky and Lepage, 1989)

• A given hadronic state is decomposed in a Fock basis:

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, ... \right) |N, \beta; k_1, ..., k_N\rangle ,$$
(12)

where the $\Psi_{N,\beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

EL SQC

Introduction to GPDs

Overlap and DD representations of GPDs ●○○○○ From Overlap to DD

Conclusion

Light-cone wave functions (LCWFs)

(Brodsky and Lepage, 1989)

• A given hadronic state is decomposed in a Fock basis:

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, ... \right) |N, \beta; k_1, ..., k_N\rangle ,$$
(12)

where the $\Psi_{N,\beta}^{\lambda}$ are the *Light-cone wave-functions* (LCWF). • For example, for the pion:

$$\ket{\pi} = \sum_{qar{q}} \psi^{\pi}_{qar{q}} \ket{qar{q}} + \sum_{qar{q}g} \psi^{\pi}_{qar{q}g} \ket{qar{q}g} + ...$$

EL SQC

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○●○○○	From Overlap to DD	Conclusion
Overlap of LCV	WFs		

• The GPD can be then computed as an overlap of LCWFs:

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{j=1}^{N} \delta_{s_{j},q} \qquad (13)$$
$$\int [\mathrm{d}\bar{x}]_{N} \left[\mathrm{d}^{2}\bar{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{j}\right) \Psi_{N,\beta}^{*}\left(\Omega_{2}\right) \Psi_{N,\beta}\left(\Omega_{1}\right) ,$$

in the DGLAP region $\xi < x < 1$ (pion case).

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○●○○○	From Overlap to DD	Conclusion
Overlap of LC	WFs		

• The GPD can be then computed as an overlap of LCWFs:

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{j=1}^{N} \delta_{s_{j},q} \qquad (13)$$
$$\int [\mathrm{d}\bar{x}]_{N} \left[\mathrm{d}^{2}\bar{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{j}\right) \Psi_{N,\beta}^{*}\left(\Omega_{2}\right) \Psi_{N,\beta}\left(\Omega_{1}\right) ,$$

in the DGLAP region $\xi < x < 1$ (pion case).

• Similar result in ERBL $(-\xi < x < \xi)$, but with N' = N + 2...

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○●○○○	From Overlap to DD	Conclusion
Overlap of LC	WFs		

• The GPD can be then computed as an overlap of LCWFs:

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{j=1}^{N} \delta_{s_{j},q} \qquad (13)$$
$$\int [\mathrm{d}\bar{x}]_{N} \left[\mathrm{d}^{2}\bar{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{j}\right) \Psi_{N,\beta}^{*}\left(\Omega_{2}\right) \Psi_{N,\beta}\left(\Omega_{1}\right) ,$$

in the DGLAP region $\xi < x < 1$ (pion case).

- Similar result in ERBL $(-\xi < x < \xi)$, but with N' = N + 2...
- Fock space is a **Hilbert space**.

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○●○○○	From Overlap to DD	Conclusion
Overlap of LC	WFs		

• The GPD can be then computed as an overlap of LCWFs:

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{j=1}^{N} \delta_{s_{j},q} \qquad (13)$$
$$\int [\mathrm{d}\bar{x}]_{N} \left[\mathrm{d}^{2}\bar{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{j}\right) \Psi_{N,\beta}^{*}\left(\Omega_{2}\right) \Psi_{N,\beta}\left(\Omega_{1}\right) ,$$

in the DGLAP region $\xi < x < 1$ (pion case).

- Similar result in ERBL $(-\xi < x < \xi)$, but with N' = N + 2...
- Fock space is a **Hilbert space**.
 - ► Cauchy-Schwarz theorem ⇒ Positivity fulfilled!

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○●○○○	From Overlap to DD	Conclusion
Overlap of LC	WFs		

• The GPD can be then computed as an overlap of LCWFs:

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{j=1}^{N} \delta_{s_{j},q} \qquad (13)$$
$$\int [\mathrm{d}\bar{x}]_{N} \left[\mathrm{d}^{2}\bar{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{j}\right) \Psi_{N,\beta}^{*}\left(\Omega_{2}\right) \Psi_{N,\beta}\left(\Omega_{1}\right) ,$$

in the DGLAP region $\xi < x < 1$ (pion case).

- Similar result in ERBL ($-\xi < x < \xi$), but with N' = N + 2...
- Fock space is a Hilbert space.
 - ► Cauchy-Schwarz theorem ⇒ Positivity fulfilled!
 - Polynomiality not manifest...

Introduction to GPDs	Overlap and DD representations of GPDs ○○●○○	From Overlap to DD	Conclusion
Double Distrib	outions (DDs)		

$$H^{q}(x,\xi,t) = \int_{\Omega} d\beta \, d\alpha \, \left(F^{q}(\beta,\alpha,t) + \xi \, G^{q}(\beta,\alpha,t)\right) \, \delta\left(x - \beta - \alpha\xi\right) \, . \, (14)$$

三日 のへの

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
00000	○○●○○	000000000	
Double Distrib	utions (DDs)		

$$H^{q}(x,\xi,t) = \int_{\Omega} d\beta \, d\alpha \, \left(F^{q}(\beta,\alpha,t) + \xi \, G^{q}(\beta,\alpha,t)\right) \, \delta\left(x - \beta - \alpha\xi\right) \, . \, (14)$$

• DDs F^q , G^q are defined on the support $\Omega = \{|\beta| + |\alpha| \le 1\}$ but are not unique:

ELE NOR

Introduction to GPDs 00000	Overlap and DD representations of GPDs 0000	From Overlap to DD	Conclusion
Double Distrib	utions (DDs)		

$$H^{q}(x,\xi,t) = \int_{\Omega} d\beta \, d\alpha \, \left(F^{q}(\beta,\alpha,t) + \xi \, G^{q}(\beta,\alpha,t)\right) \, \delta\left(x - \beta - \alpha\xi\right) \, . \, (14)$$

- DDs $F^q,~G^q$ are defined on the support $\Omega=\{|\beta|+|\alpha|\leq 1\}$ but are not unique:
 - A gauge transform leaves the GPD *H* unchanged.

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○●●●●	From Overlap to DD	Conclusion
Double Distrib	utions (DDs)		

$$H^{q}(x,\xi,t) = \int_{\Omega} d\beta \, d\alpha \, \left(F^{q}(\beta,\alpha,t) + \xi \, G^{q}(\beta,\alpha,t)\right) \, \delta\left(x - \beta - \alpha\xi\right) \, . \, (14)$$

- DDs F^q , G^q are defined on the support $\Omega = \{|\beta| + |\alpha| \le 1\}$ but are not unique:
 - A gauge transform leaves the GPD *H* unchanged.
- Polynomiality fulfilled:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} \, H\left(x,\xi,t\right) = \int \mathrm{d}x \, x^{m} \int_{\Omega} \mathrm{d}\beta \, \mathrm{d}\alpha \, \left(F\left(\beta,\alpha,t\right)+\xi \, G\left(\beta,\alpha,t\right)\right) \, \delta\left(x-\beta-\alpha\xi\right)$$
$$= \int_{\Omega} \mathrm{d}\beta \, \mathrm{d}\alpha \, \left(\beta+\xi\alpha\right)^{m} \left(F\left(\beta,\alpha,t\right)+\xi \, G\left(\beta,\alpha,t\right)\right) \, . \tag{15}$$

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○○●○○	From Overlap to DD	Conclusion
Double Distrib	utions (DDs)		

$$H^{q}(x,\xi,t) = \int_{\Omega} d\beta \, d\alpha \, \left(F^{q}(\beta,\alpha,t) + \xi \, G^{q}(\beta,\alpha,t)\right) \, \delta\left(x - \beta - \alpha\xi\right) \, . \, (14)$$

- DDs $F^q,~G^q$ are defined on the support $\Omega=\{|\beta|+|\alpha|\leq 1\}$ but are not unique:
 - A gauge transform leaves the GPD *H* unchanged.
- Polynomiality fulfilled:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} \, H\left(x,\xi,t\right) = \int \mathrm{d}x \, x^{m} \int_{\Omega} \mathrm{d}\beta \, \mathrm{d}\alpha \, \left(F\left(\beta,\alpha,t\right)+\xi \, G\left(\beta,\alpha,t\right)\right) \, \delta\left(x-\beta-\alpha\xi\right)$$
$$= \int_{\Omega} \mathrm{d}\beta \, \mathrm{d}\alpha \, \left(\beta+\xi\alpha\right)^{m} \left(F\left(\beta,\alpha,t\right)+\xi \, G\left(\beta,\alpha,t\right)\right) \, . \tag{15}$$

• **Polynomial** in ξ of degree $\leq m + 1$.

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○○●○○	From Overlap to DD	Conclusion
Double Distrib	utions (DDs)		

$$H^{q}(x,\xi,t) = \int_{\Omega} d\beta \, d\alpha \, \left(F^{q}(\beta,\alpha,t) + \xi \, G^{q}(\beta,\alpha,t)\right) \, \delta\left(x - \beta - \alpha\xi\right) \, . \, (14)$$

- DDs $F^q,~G^q$ are defined on the support $\Omega=\{|\beta|+|\alpha|\leq 1\}$ but are not unique:
 - A gauge transform leaves the GPD *H* unchanged.
- Polynomiality fulfilled:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} \, H\left(x,\xi,t\right) = \int \mathrm{d}x \, x^{m} \int_{\Omega} \mathrm{d}\beta \, \mathrm{d}\alpha \, \left(F\left(\beta,\alpha,t\right)+\xi \, G\left(\beta,\alpha,t\right)\right) \, \delta\left(x-\beta-\alpha\xi\right)$$
$$= \int_{\Omega} \mathrm{d}\beta \, \mathrm{d}\alpha \, \left(\beta+\xi\alpha\right)^{m} \left(F\left(\beta,\alpha,t\right)+\xi \, G\left(\beta,\alpha,t\right)\right) \, . \tag{15}$$

- **Polynomial** in ξ of degree $\leq m + 1$.
- Positivity not manifest...

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○○○●○	From Overlap to DD	Conclusion
One-componen	nt DD (1CDD)		

• BMKS gauge: (Belitsky et al., 2001)

$$H(x,\xi,t) = x \int_{\Omega} d\beta \, d\alpha \, f_{\mathcal{M}}(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, .$$
 (16)

with

$$\begin{cases} F(\beta,\alpha) = \beta f_M(\beta,\alpha) \\ G(\beta,\alpha) = \alpha f_M(\beta,\alpha) \end{cases} .$$
(17)

315

Introduction to GPDs 00000	Overlap and DD representations of GPDs ○○○●○	From Overlap to DD	Conclusion
One-componen	nt DD (1CDD)		

• BMKS gauge: (Belitsky et al., 2001)

$$H(x,\xi,t) = x \int_{\Omega} d\beta \, d\alpha \, f_{\mathcal{M}}(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, .$$
 (16)

with

$$\begin{cases} F(\beta,\alpha) = \beta f_M(\beta,\alpha) \\ G(\beta,\alpha) = \alpha f_M(\beta,\alpha) \end{cases} .$$
(17)

• Pobylitsa gauge: (Pobylitsa, 2004)

$$H(x,\xi,t) = (1-x) \int_{\Omega} d\beta \, d\alpha \, f_{P}(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \,.$$
(18)

with

$$\begin{cases} F(\beta,\alpha) = (1-\beta) f_P(\beta,\alpha) \\ G(\beta,\alpha) = -\alpha f_P(\beta,\alpha) \end{cases} .$$
(19)

-

• Radon Transform:

-1

$$\mathcal{R}f(x,\xi) \propto \int \mathrm{d}\beta \,\mathrm{d}\alpha \,f(\beta,\alpha) \,\delta(x-\beta-\alpha\xi)$$
. (20)

ELE NOR

14 / 28

-1

Introduction to GPDs	Overlap and DD representations of GPDs ○○○○●	From Overlap to DD	Conclusion

Radon transform

• Radon Transform:

$$\mathcal{R}f(x,\xi) \propto \int \mathrm{d}\beta \,\mathrm{d}\alpha \,f(\beta,\alpha) \,\delta(x-\beta-\alpha\xi)$$
. (20)

• DGLAP region: $|x| > |\xi|$.

-

JI SOCO

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
	00000		

Radon transform

• Radon Transform:

$$\mathcal{R}f(x,\xi) \propto \int \mathrm{d}\beta \,\mathrm{d}\alpha \,f(\beta,\alpha) \,\delta(x-\beta-\alpha\xi)$$
. (20)

- DGLAP region: $|x| > |\xi|$.
- ERBL region: $|x| < |\xi|$.

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Outline			

Introduction to Generalized Parton Distributions

- Why Generalized Parton Distributions?
- Definition and properties

Overlap and Double Distribution representations of GPDs

- Overlap of Light-cone wave functions
- Double Distributions

From an Overlap of LCWFs to a Double Distribution

- Inversion of Incomplete Radon Transform
- Results

JULIIIE

Conclusion

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ●00000000	Conclusion
From DGLAP	GPD to a DD		

• In Overlap representation: DGLAP region only (e.g. two-body LCWFs).

JI SOCO

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ●00000000	Conclusion
From DGLAP	GPD to a DD		

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
 - Need ERBL to complete **polynomiality**.

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD •00000000	Conclusion
From DGLAP	GPD to a DD		

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
 - Need ERBL to complete **polynomiality**.

Find $f(\beta, \alpha)$ on square $\{|\alpha| + |\beta| \le 1\}$ such that

$$\left. H\left(x,\xi\right) \right|_{\mathrm{DGLAP}} = \left\{ \begin{array}{c} x \\ 1-x \end{array}
ight\} \int \mathrm{d}\beta \,\mathrm{d}\alpha \, f\left(\beta,\alpha\right) \delta\left(x-\beta-\alpha\xi\right) \,.$$

3 5

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD •00000000	Conclusion
From DGLAP	GPD to a DD		

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
 - Need ERBL to complete **polynomiality**.

Find $f(\beta, \alpha)$ on square $\{|\alpha| + |\beta| \le 1\}$ such that

$$\left. H\left(x,\xi\right) \right|_{\mathrm{DGLAP}} = \left\{ \begin{array}{c} x \\ 1-x \end{array}
ight\} \int \mathrm{d}\beta \,\mathrm{d}\alpha \, f\left(\beta,\alpha\right) \delta\left(x-\beta-\alpha\xi\right) \,.$$

• If model fulfills Lorentz invariance:

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
00000		●00000000	000
From DGLAP	GPD to a DD		

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
 - Need ERBL to complete **polynomiality**.

Find $f(\beta, \alpha)$ on square $\{|\alpha| + |\beta| \le 1\}$ such that

$$\left. H\left(x,\xi\right) \right|_{\mathrm{DGLAP}} = \left\{ \begin{array}{c} x \\ 1-x \end{array}
ight\} \int \mathrm{d}\beta \,\mathrm{d}\alpha \, f\left(\beta,\alpha\right) \delta\left(x-\beta-\alpha\xi\right) \,.$$

- If model fulfills Lorentz invariance:
 - DD $f(\beta, \alpha)$ exists (as a *distribution*) and is unique (if it is a *function*).

EL SOCO

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
00000		•00000000	000
From DGLAP	GPD to a DD		

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
 - Need ERBL to complete **polynomiality**.

Find $f(\beta, \alpha)$ on square $\{|\alpha| + |\beta| \le 1\}$ such that

$$\left. H\left(x,\xi\right) \right|_{\mathrm{DGLAP}} = \left\{ \begin{array}{c} x \\ 1-x \end{array}
ight\} \int \mathrm{d}\beta \,\mathrm{d}\alpha \, f\left(\beta,\alpha\right) \delta\left(x-\beta-\alpha\xi\right) \,.$$

- If model fulfills Lorentz invariance:
 - DD $f(\beta, \alpha)$ exists (as a *distribution*) and is **unique** (if it is a *function*).
 - We can reconstruct the GPD everywhere.

(Moutarde, 2015)

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion

Support properties

Image: A math black

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Support properties			

• Valence GPD: $H(x,\xi) = 0$ for $-1 < x < -|\xi| \Longrightarrow f(\beta,\alpha) = 0$ for $\beta < 0$.

1 = 1

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD 0●000000	Conclusion
Support prop	erties		
α 1 ⁴		ڊ 1	

• Valence GPD: $H(x,\xi) = 0$ for $-1 < x < -|\xi| \Longrightarrow f(\beta,\alpha) = 0$ for $\beta < 0$.

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○●○○○○○○○	Conclusion 000
Support prope	erties		
		۶ 1	

Nabil Chouika

Domains $\beta < 0$ and $\beta > 0$ are uncorrelated in the DGLAP region. •

• Valence GPD: $H(x,\xi) = 0$ for $-1 < x < -|\xi| \Longrightarrow f(\beta,\alpha) = 0$ for $\beta < 0$.

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
00000		0●0000000	000
Support prope	rties		

- Valence GPD: $H(x,\xi) = 0$ for $-1 < x < -|\xi| \Longrightarrow f(\beta,\alpha) = 0$ for $\beta < 0$.
- Domains $\beta < 0$ and $\beta > 0$ are uncorrelated in the DGLAP region.
- Divide and conquer:
 - Better numerical stability.
 - Lesser complexity: $O(N^p + N^p) \ll O((N + N)^p)$.

Overlap and DD representations of GPDs

From Overlap to DD 00000000

Conclusion

Domain for the inversion

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

三日 のへの

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Domain for the inversion

• Rotated square $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \times \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$:

$$\begin{cases} u = \frac{\beta + \alpha}{\sqrt{2}} & , \\ v = \frac{\alpha - \beta}{\sqrt{2}} & . \end{cases}$$
(21)

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Domain for the inversion

- Rotated square $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \times \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$: $\begin{cases}
 u = \frac{\beta + \alpha}{\sqrt{2}} , \\
 v = \frac{\alpha - \beta}{\sqrt{2}} .
 \end{cases}$ (21)
- α-parity of the DD:

$$f(\beta, -\alpha) = f(\beta, \alpha)$$
. (22)

NPQCD16 18/10/16

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Discretization			

• Discretization of the DD (piece-wise constant):

= 9QC

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
00000		000●00000	000
Discretization			

• Discretization of the DD (piece-wise constant):

$$\tilde{f}(u, v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{ij} \mathbf{1}_{[u_i, u_{i+1}]}(u) \mathbf{1}_{[v_j, v_{j+1}]}(v) ,$$
(23)
(23)

三日 のへの

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Discretization			

• Discretization of the DD (piece-wise constant):

$$\tilde{f}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{ij} \mathbf{1}_{[u_i, u_{i+1}]}(u) \mathbf{1}_{[v_j, v_{j+1}]}(v) ,$$
(23)

• Mesh:

• Cells $(u,v) \rightarrow n$ columns of the matrix.

三日 のへの

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Discretization			

• Discretization of the DD (piece-wise constant):

$$\tilde{f}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{ij} \mathbf{1}_{[u_i, u_{i+1}]}(u) \mathbf{1}_{[v_j, v_{j+1}]}(v) ,$$
(23)

• Mesh:

• Cells $(u,v) \rightarrow n$ columns of the matrix.

• Sampling:

三日 のへの

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Discrotization			

• Discretization of the DD (piece-wise constant):

$$\tilde{f}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{ij} \mathbf{1}_{[u_i, u_{i+1}]}(u) \mathbf{1}_{[v_j, v_{j+1}]}(v) ,$$
(23)

• Mesh:

- Cells $(u,v) \rightarrow n$ columns of the matrix.
- Sampling:
 - ► Random couples (x,ξ) → m ≥ n lines of the matrix.

00000	00000	000
Discretization		

• Discretization of the DD (piece-wise constant):

$$\tilde{f}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{ij} \mathbf{1}_{[u_i, u_{i+1}]}(u) \mathbf{1}_{[v_j, v_{j+1}]}(v) ,$$
(23)

• Mesh:

- Cells $(u,v) \rightarrow n$ columns of the matrix.
- Sampling:
 - ► Random couples (x,ξ) → m ≥ n lines of the matrix.
- Linear problem: AX = B where $B_k = H(x_k, \xi_k)$.

00000	00000	000
Discretization		

• Discretization of the DD (piece-wise constant):

$$\tilde{f}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{ij} \mathbf{1}_{[u_i, u_{i+1}]}(u) \mathbf{1}_{[v_j, v_{j+1}]}(v) ,$$
(23)

• Mesh:

- Cells (u,v) → n columns of the matrix.
- Sampling:
 - ► Random couples (x,ξ) → m ≥ n lines of the matrix.
- Linear problem: AX = B where $B_k = H(x_k, \xi_k)$.
 - A full-rank: more information but also more noise.

= nan

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Tests (constant DD)

• Test with Constant DD.

$$f(\beta, \alpha) = \begin{cases} 1 & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

$$\downarrow$$

$$H(x, \xi)|_{\text{DGLAP}} = \begin{cases} \frac{2x(1-x)}{1-\xi^2} & |\xi| < x < 1\\ 0 & -1 < x < -|\xi| \end{cases}$$

20 / 28

三日 のへで

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Tests (constant DD)

• Test with Constant DD.

 Goal: retrieve known DD from DGLAP GPD.

$$f(\beta, \alpha) = \begin{cases} 1 & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

$$\downarrow$$

$$(\frac{2x(1-x)}{2} |\xi| < x < 1)$$

$$H(x,\xi)|_{\text{DGLAP}} = \begin{cases} \frac{2x(1-x)}{1-\xi^2} & |\xi| < x < 1\\ 0 & -1 < x < -|\xi| \end{cases}$$

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

三日 のへの

Introduction to GPDs Overlap and DI

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Tests (constant DD)

- Test with Constant DD.
 - Goal: retrieve known DD from DGLAP GPD.
- Consistent problem (discretized DD = theoretical DD):

$$f(\beta, \alpha) = \begin{cases} \mathbf{1} & \beta > \mathbf{0} \\ \mathbf{0} & \beta < \mathbf{0} \end{cases}$$
$$\downarrow$$
$$\left\{ \begin{array}{c} \frac{\mathbf{2}x(\mathbf{1}-x)}{2} & |\xi| < x < \mathbf{1} \end{cases} \right.$$

$$H(x,\xi)|_{\text{DGLAP}} = \begin{cases} \frac{2x(1-x)}{1-\xi^2} & |\xi| < x < 1\\ 0 & -1 < x < -|\xi| \end{cases}$$

Image: Image:

NPQCD16 18/10/16

토토 외۹연 20 / 28

Overlap and DD representations of GPDs

From Overlap to DD

Conclusion

Tests (constant DD)

- Test with Constant DD.
 - Goal: retrieve known DD from DGLAP GPD.
- Consistent problem (discretized DD = theoretical DD):
 - Objective DD retrieved at arbitrary precision: residue decreases to 0 (machine precision).

$$f(\beta, \alpha) = \begin{cases} 1 & \beta > 0 \\ 0 & \beta < 0 \end{cases}$$

$$H(x,\xi)|_{\text{DGLAP}} = \begin{cases} \frac{2x(1-x)}{1-\xi^2} & |\xi| < x < 1\\ 0 & -1 < x < -|\xi| \end{cases}$$

NPQCD16 18/10/16

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion 000
T_{octc} (RDDA)			

Test with a DD inspired by Radyushkin ansatz.

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○●○○○	Conclusion
Tests (RDDA)			

- Test with a DD inspired by Radyushkin ansatz.
 - Goal: retrieve known DD from DGLAP GPD.

$$f\left(\beta,\alpha\right) = \begin{cases} \frac{3\left(\alpha^2 - (1-\beta)^2\right)\beta}{4(-1+\beta)} & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

 \downarrow

$$= \frac{H(x,\xi)|_{x>|\xi|}}{\left(1-x\right)^3 \left(3\xi + (2x-5)\,\xi^3 - 3\left(1-\xi^2\right)^2 \arctan\xi\right)}{2\xi^3 \left(1-\xi^2\right)^2}$$

NPQCD16 18/10/16

EL SQA

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○●○○○	Conclusion
Tests (RDDA)			

- Test with a DD inspired by Radyushkin ansatz.
 - Goal: retrieve known DD from DGLAP GPD.
- Smooth function, vanishes at the boundaries.

$$f\left(\beta,\alpha\right) = \begin{cases} \frac{\mathbf{3}\left(\alpha^{\mathbf{2}} - (\mathbf{1} - \beta)^{\mathbf{2}}\right)\beta}{\mathbf{4}(-\mathbf{1} + \beta)} & \beta > \mathbf{0} \\ \mathbf{0} & \beta < \mathbf{0} \end{cases}$$

 \downarrow

- I A P

$$=\frac{H(x,\xi)|_{x>|\xi|}}{\left(1-x\right)^{3}\left(3\xi+(2x-5)\,\xi^{3}-3\left(1-\xi^{2}\right)^{2}\arctan\xi\right)}{2\xi^{3}\left(1-\xi^{2}\right)^{2}}$$

=

NPQCD16 18/10/16

ELE NOR

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○●○○○	Conclusion
T_{octs} (RDDA)			

f

- Test with a DD inspired by Radyushkin ansatz.
 - Goal: retrieve known DD from DGLAP GPD.
- Smooth function, vanishes at the boundaries.
 - Least-squares problem: residue has a finite limit.

$$(\beta,\alpha) = \begin{cases} \frac{\mathbf{3}\left(\alpha^2 - (\mathbf{1}-\beta)^2\right)\beta}{\mathbf{4}(-\mathbf{1}+\beta)} & \beta > 0\\ \mathbf{0} & \beta < \mathbf{0} \end{cases}$$

$$\frac{\left. \begin{array}{l} H\left(x,\xi\right)\right|_{x>\left|\xi\right|}}{\left(1-x\right)^{3}\left(3\xi+\left(2x-5\right)\xi^{3}-3\left(1-\xi^{2}\right)^{2}\arctan\xi\right)}\\ \frac{\left(2\xi^{3}\left(1-\xi^{2}\right)^{2}\right)^{2}}{2\xi^{3}\left(1-\xi^{2}\right)^{2}}\end{array}$$

Extending a GPD from DGLAP to ERBL

NPQCD16 18/10/16

21 / 28

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
Tests (RDDA)			

- Test with a DD inspired by Radyushkin ansatz.
 - Goal: retrieve known DD from DGLAP GPD.
- Smooth function, vanishes at the boundaries.
 - Least-squares problem: residue has a finite limit.
 - Compromise between noise on
 - $\beta = 0$ and artifact on $\alpha = 0$.

$$f\left(\beta,\alpha\right) = \begin{cases} \frac{3\left(\alpha^2 - (1-\beta)^2\right)\beta}{4(-1+\beta)} & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

$$\downarrow$$

$$\frac{H(x,\xi)|_{x>|\xi|}}{\frac{(1-x)^{3}\left(3\xi+(2x-5)\,\xi^{3}-3\left(1-\xi^{2}\right)^{2}\arctan\xi\right)}{2\xi^{3}\left(1-\xi^{2}\right)^{2}}}$$

NPQCD16 18/10/16

0/16 21 / 28

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○○●○○	Conclusion
Et al la la			

First result

• Real application to an algebraic DSE overlap model.

$$f(\beta, \alpha) = \begin{cases} ? & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

$$\downarrow$$

$$H(x, \xi)|_{x > |\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

- A 🖓

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○○●○○	Conclusion
E I.			

First result

- Real application to an algebraic DSE overlap model.
 - Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).

$$f(\beta, \alpha) = \begin{cases} ? & \beta > 0\\ 0 & \beta < 0 \end{cases}$$
$$\downarrow$$
$$H(x, \xi)|_{x > |\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

리님
Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○○●○○	Conclusion
F 1 . 1.			

- Real application to an algebraic DSE overlap model.
 - Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).
- Singularities in BMKS gauge:

$$f(\beta, \alpha) = \begin{cases} ? & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

$$\downarrow$$

$$H(x, \xi)|_{x > |\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

NPQCD16 18/10/16

22 / 28

ъ

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○○●○○	Conclusion
F 1 . 1.			

- Real application to an algebraic DSE overlap model.
 - Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).
- Singularities in BMKS gauge:
 - Physical or numerical?

$$f(\beta, \alpha) = \begin{cases} ? & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

$$\downarrow$$

$$H(x, \xi)|_{x > |\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

NPQCD16 18/10/16

22 / 28

ъ

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○○●○○	Conclusion

- Real application to an algebraic DSE overlap model.
 - Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).
- Singularities in BMKS gauge:
 - Physical or numerical?
- Smooth function in Pobylitsa gauge:

$$f(\beta, \alpha) = \begin{cases} ? & \beta > 0\\ 0 & \beta < 0 \end{cases}$$
$$\downarrow$$
$$H(x, \xi)|_{x > |\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

ъ

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD ○○○○○○●○○	Conclusion

- Real application to an algebraic DSE overlap model.
 - Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).
- Singularities in BMKS gauge:
 - Physical or numerical?
- Smooth function in Pobylitsa gauge:
 - $(1-x)^2$ behavior of the GPD.

$$f(\beta, \alpha) = \begin{cases} ? & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

$$\downarrow$$

$$H(x, \xi)|_{x > |\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

NPQCD16 18/10/16

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion
00000	00000	○○○○○○●○○	

- Real application to an algebraic DSE overlap model.
 - Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).
- Singularities in BMKS gauge:
 - Physical or numerical?
- Smooth function in Pobylitsa gauge:
 - $(1-x)^2$ behavior of the GPD.
 - Positivity of the Pobylitsa gauge.

$$f(\beta, \alpha) = \begin{cases} ? & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

$$\downarrow$$

$$H(x, \xi)|_{x > |\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

NPQCD16 18/10/16

Introduction to GPD	Os Overlap	and DD representations	of GPDs From	m Overlap to DD ⊃○○○●○○	Conclusion

- Real application to an algebraic DSE overlap model.
 - Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).
- Singularities in BMKS gauge:
 - Physical or numerical?
- Smooth function in Pobylitsa gauge:
 - $(1-x)^2$ behavior of the GPD.
 - Positivity of the Pobylitsa gauge.

$$F\left(eta,lpha
ight)= egin{cases} rac{30}{4}\left(1-3lpha^2-2eta+3eta^2
ight) & eta>0\ 0 & eta<0 \end{cases}$$

$$H(x,\xi)|_{x>|\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

NPQCD16 18/10/16

Introduction to GPD	Os Overlap	and DD representations	of GPDs From	m Overlap to DD ⊃○○○●○○	Conclusion

- Real application to an algebraic DSE overlap model.
 - Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).
- Singularities in BMKS gauge:
 - Physical or numerical?
- Smooth function in Pobylitsa gauge:
 - $(1-x)^2$ behavior of the GPD.
 - Positivity of the Pobylitsa gauge.

$$f\left(eta,lpha
ight)= egin{cases} rac{30}{4}\left(1-3lpha^2-2eta+3eta^2
ight) & eta>0\ 0 & eta<0 \end{cases}$$

$$H(x,\xi)|_{x>|\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

NPQCD16 18/10/16

Overlap and DD representations of GPDs

From Overlap to DD ○○○○○○●○ Conclusion

Quantitative comparison of DDs

Figure: Quantitative comparison for the Overlap results. Left: Theoretical discretized DD. Middle: Numerical solution at tolerance 10^{-6} . Right: Absolute difference.

$$f(\beta, \alpha) = \begin{cases} \frac{3(\alpha^2 - (1-\beta)^2)\beta}{4(-1+\beta)} & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

Overlap and DD representations of GPDs

From Overlap to DD ○○○○○○●○ Conclusion

Quantitative comparison of DDs

Figure: Quantitative comparison for the RDDA results. Left: Theoretical discretized DD. Middle: Numerical solution at tolerance 10^{-6} . Right: Absolute difference.

$$f(\beta,\alpha) = \begin{cases} \frac{30}{4} \left(1 - 3\alpha^2 - 2\beta + 3\beta^2\right) & \beta > 0\\ 0 & \beta < 0 \end{cases}$$

Overlap and DD representations of GPDs

From Overlap to DD ○○○○○○○● Conclusion

Quantitative comparison of GPDs

Figure: Quantitative comparison for the Overlap GPD obtained from the numerical DD solution. Left: Theoretical GPD. Middle: Numerical solution at tolerance 10^{-6} . Right: Absolute difference.

$$H(x,\xi)|_{x>|\xi|} = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2}$$

Overlap and DD representations of GPDs

From Overlap to DD ○○○○○○○● Conclusion

Quantitative comparison of GPDs

Figure: Quantitative comparison for the RDDA GPD obtained from the numerical DD solution. Left: Theoretical GPD. Middle: Numerical solution at tolerance 10⁻⁶. Right: Absolute difference.

$$H(x,\xi)|_{x>|\xi|} = \frac{(1-x)^3 \left(3\xi + (2x-5)\,\xi^3 - 3\,\left(1-\xi^2\right)^2 \arctan\xi\right)}{2\xi^3 \left(1-\xi^2\right)^2}$$

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

• Extension of the algebraic DSE overlap model.

- A 🖓

三日 のへの

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:

$$\blacktriangleright \text{ LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \text{GPD in DGLAP} \underset{\mathrm{Inverse Radon Transform}}{\longrightarrow} \text{DD} \longrightarrow \text{GPD}.$$

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!
- Important points:

EL SQA

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!
- Important points:
 - Compromise with respect to noise and convergence.

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!
- Important points:
 - Compromise with respect to noise and convergence.
 - Pobylitsa gauge is promising.

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!
- Important points:
 - Compromise with respect to noise and convergence.
 - Pobylitsa gauge is promising.
- In the future:

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!
- Important points:
 - Compromise with respect to noise and convergence.
 - Pobylitsa gauge is promising.
- In the future:
 - Different methods: Basis functions, Bayesian methods, etc.

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!
- Important points:
 - Compromise with respect to noise and convergence.
 - Pobylitsa gauge is promising.
- In the future:
 - Different methods: Basis functions, Bayesian methods, etc.
 - Handling of errors.

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse Radon Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!
- Important points:
 - Compromise with respect to noise and convergence.
 - Pobylitsa gauge is promising.
- In the future:
 - Different methods: Basis functions, Bayesian methods, etc.
 - Handling of errors.
- Thank you!

Introduction to GPDs	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ●○○
Summary			

- Extension of the algebraic DSE overlap model.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse Radon Transform}}{\longrightarrow} \mathsf{DD} \longrightarrow \mathsf{GPD}.$
 - Both polynomiality and positivity!
- Important points:
 - Compromise with respect to noise and convergence.
 - Pobylitsa gauge is promising.
- In the future:
 - Different methods: Basis functions, Bayesian methods, etc.
 - Handling of errors.
- Thank you!
 - Any questions?

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ○●●
Bibliography I			

- A. V. Belitsky, D. Mueller, and A. Kirchner, "Theory of deeply virtual Compton scattering on the nucleon", Nucl. Phys. B629 (2002) 323-392, arXiv:hep-ph/0112108 [hep-ph].
- M. Burkardt, "Impact parameter dependent parton distributions and off forward parton distributions for zeta —> 0", Phys. Rev. D62 (2000) 071503, arXiv:hep-ph/0005108 [hep-ph], [Erratum: Phys. Rev.D66,119903(2002)].
- X.-D. Ji, "Gauge-Invariant Decomposition of Nucleon Spin", Phys. Rev. Lett. 78 (1997) 610-613, arXiv:hep-ph/9603249 [hep-ph].
- D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejši, "Wave functions, evolution equations and evolution kernels from light ray operators of QCD", Fortsch. Phys. 42 (1994) 101-141, arXiv:hep-ph/9812448 [hep-ph].
- A. V. Radyushkin, "Scaling limit of deeply virtual Compton scattering", Phys. Lett. B380 (1996) 417-425, arXiv:hep-ph/9604317 [hep-ph].
- X.-D. Ji, "Deeply virtual Compton scattering", Phys. Rev. D55 (1997) 7114-7125, arXiv:hep-ph/9609381 [hep-ph].
- B. Pire, J. Soffer, and O. Tervaev, "Positivity constraints for off forward parton distributions", Eur. Phys. J. C8 (1999) 103-106, arXiv:hep-ph/9804284 [hep-ph].
- S. J. Brodsky and G. P. Lepage, "Exclusive Processes in Quantum Chromodynamics", Adv. Ser. Direct. High Energy Phys. 5 (1989) 93-240.

Introduction to GPDs 00000	Overlap and DD representations of GPDs	From Overlap to DD	Conclusion ○●●
Bibliography II			

- M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, "The overlap representation of skewed quark and gluon distributions", Nucl. Phys. B596 (2001) 33-65, arXiv:hep-ph/0009255 [hep-ph], [Erratum: Nucl. Phys.B605,647(2001)].
- C. Mezrag, "Generalised Parton Distributions : from phenomenological approaches to Dyson-Schwinger equations", PhD thesis, IRFU, SPhN, Saclay, 2015.
- A. V. Belitsky, D. Mueller, A. Kirchner, and A. Schafer, "Twist three analysis of photon electroproduction off pion", Phys. Rev. D64 (2001) 116002, arXiv:hep-ph/0011314 [hep-ph].
- P. V. Pobylitsa, "Virtual Compton scattering in the generalized Bjorken region and positivity bounds on generalized parton distributions", Phys. Rev. D70 (2004) 034004, arXiv:hep-ph/0211160 [hep-ph].
- H. Moutarde, "Nucleon Reverse Engineering: Structuring hadrons with colored degrees of freedom". 2015.
- C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, "From Bethe-Salpeter Wave functions to Generalised Parton Distributions", Few Body Syst. 57 (2016), no. 9, 729-772, arXiv:1602.07722 [nucl-th].
- D. Mueller, "Generalized Parton Distributions visions, basics, and realities -", Few Body Syst. 55 (2014) 317-337, arXiv:1405.2817 [hep-ph].

DSE Overlap DD

Recall the GPD: (Mezrag, 2015; Mezrag et al., 2016)

$$H(x,\xi) = 30 \frac{(1-x)^2 (x^2 - \xi^2)}{(1-\xi^2)^2} .$$
(24)

After trial and error (to reproduce the numerical result in Pobylitsa gauge that looks like a polynomial):

$$f_{P}(\beta,\alpha) = \frac{30}{4} \left(1 - 3\alpha^{2} - 2\beta + 3\beta^{2} \right) \,. \tag{25}$$

And with the mapping from Ref. (Mueller, 2014) (Eq. (10) of the article), we get the singular indeed DD in BMKS gauge:

$$f_{M}(\beta,\alpha) = \frac{30}{4} \left(\alpha^{2} \left(3 - \frac{3}{(|\alpha| + \beta)^{4}} \right) + \beta^{2} \left(\frac{3}{(|\alpha| + \beta)^{3}} - 3 \right) \right.$$
$$\left. + \beta \left(4 - \frac{4}{(|\alpha| + \beta)^{3}} \right) + \frac{2}{(|\alpha| + \beta)^{2}} - 2 \right) \right.$$
$$\left. + \frac{30}{4} \left(1 - \alpha^{2} \right) \delta(\beta) \,.$$
(26)

ELE NOR