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Experimental access (example: DVCS)

Deeply Virtual Compton
Scattering channel of photon

electroproduction.

∆ = P2 − P1 , t = ∆2 < 0

Q2 = −q21 > 0

P =
1
2

(P1 + P2) , ξ = − ∆+

2P+

Compton Form Factors: (Belitsky et al., 2002)

F
(
ξ, t,Q2) =

∫ 1

−1
dx C

(
x , ξ, αS (µF ) ,

Q

µF

)
F (x , ξ, t, µF ) , (1)

where F ∈
{
H, E , H̃, Ẽ , ...

}
is a Generalized Parton Distribution.

Nabil Chouika Extending a GPD from DGLAP to ERBL NPQCD16 18/10/16 4 / 28



Introduction to GPDs Overlap and DD representations of GPDs From Overlap to DD Conclusion

Experimental access (example: DVCS)

Deeply Virtual Compton
Scattering channel of photon

electroproduction.

∆ = P2 − P1 , t = ∆2 < 0

Q2 = −q21 > 0

P =
1
2

(P1 + P2) , ξ = − ∆+

2P+

Compton Form Factors: (Belitsky et al., 2002)

F
(
ξ, t,Q2) =

∫ 1

−1
dx C

(
x , ξ, αS (µF ) ,

Q

µF

)
F (x , ξ, t, µF ) , (1)

where F ∈
{
H, E , H̃, Ẽ , ...
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Nucleon imaging

• Correlation of the longitudinal momentum and the transverse position
of the partons inside the hadron.

• Probability density (Fourier transform of GPD): (Burkardt, 2000)

q
(
x , ~b⊥

)
=

∫
d2 ~∆⊥
(2π)2

e−i
~b⊥· ~∆⊥ Hq

(
x , 0,− ~∆⊥

2)
. (2)

Figure: Hadron tomography.
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Nucleon spin

• Ji’s decomposition of the nucleon spin: (Ji, 1997)

1
2

=
∑
q

Jq + Jg . (3)

• Ji’s sum rule:

Jq =
1
2

∫ 1

−1
x [Hq (x , ξ, 0) + Eq (x , ξ, 0)] dx

=
1
2

∫ 1

0
x [q (x) + q̄ (x)] dx +

1
2

∫ 1

−1
x Eq (x , 0, 0) dx

=
1
2

∆q + Lq . (4)
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Definition of GPDs

• Quark GPD: (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

F q (x , ξ, t) =
1
2

∫
dz−

2π
e i x P+z−

〈
P2
∣∣q̄ (−z) γ+q (z)

∣∣P1
〉∣∣

z+=0, z⊥=0 ,

(5)

• Similar with H̃, Ẽ and gluons...
• Link to PDFs and Form Factors:∫

dx Hq (x , ξ, t) = F q
1 (t) ,

∫
dx Eq (x , ξ, t) = F q

2 (t) , (8)

Hq (x , 0, 0) = θ (x) q (x)− θ (−x) q̄ (−x) . (9)
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ū (P2) γ+u (P1)Hq +

i∆ν

2mN
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Theoretical constraints on GPDs

Main properties:
• Support: x , ξ ∈ [−1, 1].

• Polynomiality: ∫ 1

−1
dx xm H (x , ξ, t) = Polynomial in ξ . (10)

I From Lorentz invariance.

• Positivity: (Pire et al., 1999)

Hq (x , ξ, t) ≤

√
q

(
x − ξ
1− ξ

)
q

(
x + ξ

1 + ξ

)
. (11)

I Cauchy-Schwarz theorem in Hilbert space.
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Light-cone wave functions (LCWFs)

(Brodsky and Lepage, 1989)

• A given hadronic state is decomposed in a Fock basis:

|H;P, λ〉 =
∑
N,β

∫
[dx ]N

[
d2k⊥

]
N

Ψλ
N,β (x1, k⊥1, ...) |N, β; k1, ..., kN〉 ,

(12)
where the Ψλ

N,β are the Light-cone wave-functions (LCWF).

• For example, for the pion:

|π〉 =
∑
qq̄

ψπqq̄ |qq̄〉+
∑
qq̄g

ψπqq̄g |qq̄g〉+ ...
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Overlap of LCWFs

(Diehl et al., 2001; Mezrag, 2015)

• The GPD can be then computed as an overlap of LCWFs:

Hq (x , ξ, t) =
∑
N,β

√
1− ξ

2−N√
1 + ξ

2−N
N∑
j=1

δsj ,q (13)∫
[dx̄ ]N

[
d2k̄⊥

]
N
δ (x − x̄j) Ψ∗N,β (Ω2) ΨN,β (Ω1) ,

in the DGLAP region ξ < x < 1 (pion case).

• Similar result in ERBL (−ξ < x < ξ), but with N ′ = N + 2...
• Fock space is a Hilbert space.

I Cauchy-Schwarz theorem ⇒ Positivity fulfilled!
I Polynomiality not manifest...
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Double Distributions (DDs)

• DD representation of GPDs:

Hq (x , ξ, t) =

∫
Ω

dβ dα (F q (β, α, t) + ξ G q (β, α, t)) δ (x − β − αξ) . (14)

• DDs F q, Gq are defined on the support Ω = {|β|+ |α| ≤ 1} but are
not unique:

I A gauge transform leaves the GPD H unchanged.

• Polynomiality fulfilled:
∫ 1

−1
dx xm H (x , ξ, t) =

∫
dx xm

∫
Ω

dβ dα (F (β, α, t) + ξ G (β, α, t)) δ (x − β − αξ)

=

∫
Ω

dβ dα (β + ξα)m (F (β, α, t) + ξ G (β, α, t)) . (15)

I Polynomial in ξ of degree ≤ m + 1.
I Positivity not manifest...
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One-component DD (1CDD)

• BMKS gauge: (Belitsky et al., 2001)

H (x , ξ, t) = x

∫
Ω

dβ dα fM (β, α, t) δ (x − β − αξ) . (16)

with {
F (β, α) = β fM (β, α)
G (β, α) = α fM (β, α)

. (17)

• Pobylitsa gauge: (Pobylitsa, 2004)

H (x , ξ, t) = (1− x)

∫
Ω

dβ dα fP (β, α, t) δ (x − β − αξ) . (18)

with {
F (β, α) = (1− β) fP (β, α)
G (β, α) = −α fP (β, α)

. (19)
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Radon transform

R
−→

• Radon Transform:

Rf (x , ξ) ∝
∫

dβ dα f (β, α) δ (x − β − αξ) . (20)

I DGLAP region: |x | > |ξ|.
I ERBL region: |x | < |ξ|.

Nabil Chouika Extending a GPD from DGLAP to ERBL NPQCD16 18/10/16 14 / 28



Introduction to GPDs Overlap and DD representations of GPDs From Overlap to DD Conclusion

Radon transform

R
−→

• Radon Transform:

Rf (x , ξ) ∝
∫

dβ dα f (β, α) δ (x − β − αξ) . (20)

I DGLAP region: |x | > |ξ|.

I ERBL region: |x | < |ξ|.

Nabil Chouika Extending a GPD from DGLAP to ERBL NPQCD16 18/10/16 14 / 28



Introduction to GPDs Overlap and DD representations of GPDs From Overlap to DD Conclusion

Radon transform

R
−→

• Radon Transform:

Rf (x , ξ) ∝
∫

dβ dα f (β, α) δ (x − β − αξ) . (20)

I DGLAP region: |x | > |ξ|.
I ERBL region: |x | < |ξ|.

Nabil Chouika Extending a GPD from DGLAP to ERBL NPQCD16 18/10/16 14 / 28



Introduction to GPDs Overlap and DD representations of GPDs From Overlap to DD Conclusion

Outline

1 Introduction to Generalized Parton Distributions
Why Generalized Parton Distributions?
Definition and properties

2 Overlap and Double Distribution representations of GPDs
Overlap of Light-cone wave functions
Double Distributions

3 From an Overlap of LCWFs to a Double Distribution
Inversion of Incomplete Radon Transform
Results

4 Conclusion

Nabil Chouika Extending a GPD from DGLAP to ERBL NPQCD16 18/10/16 15 / 28



Introduction to GPDs Overlap and DD representations of GPDs From Overlap to DD Conclusion

From DGLAP GPD to a DD

• In Overlap representation: DGLAP region only (e.g. two-body
LCWFs).

I Need ERBL to complete polynomiality.

Problem
Find f (β, α) on square {|α|+ |β| ≤ 1} such that

H (x , ξ)|DGLAP =

{
x

1− x

}∫
dβ dα f (β, α) δ (x − β − αξ) .

• If model fulfills Lorentz invariance:

I DD f (β, α) exists (as a distribution) and is unique (if it is a function).
I We can reconstruct the GPD everywhere.

(Moutarde, 2015)
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Support properties

R
−→

• Valence GPD: H (x , ξ) = 0 for −1 < x < − |ξ| =⇒ f (β, α) = 0 for β < 0.
• Domains β < 0 and β > 0 are uncorrelated in the DGLAP region.
• Divide and conquer:

I Better numerical stability.

I Lesser complexity: O (Np + Np)� O
(
(N + N)p

)
.
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Domain for the inversion

• Rotated square
[
− 1√

2
, 1√

2

]
×
[
− 1√

2
, 1√

2

]
:

u =
β + α√

2
,

v =
α− β√

2
.

(21)

• α-parity of the DD:

f (β,−α) = f (β, α) . (22)
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Discretization

• Discretization of the DD (piece-wise
constant):

f̃ (u, v) =

N−1∑
i=0

N−1∑
j=0

f̃ij 1[ui ,ui+1] (u) 1[vj ,vj+1] (v) ,

(23)

• Mesh:

I Cells (u,v) → n columns of the
matrix.

• Sampling:

I Random couples (x ,ξ) → m ≥ n
lines of the matrix.

• Linear problem: AX = B where
Bk = H (xk , ξk).

I A full-rank: more information
but also more noise.
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Tests (constant DD)

• Test with Constant DD.

I Goal: retrieve known DD from
DGLAP GPD.

• Consistent problem (discretized DD =
theoretical DD):

I Objective DD retrieved at arbitrary
precision: residue decreases to 0
(machine precision).

f (β, α) =

{
1 β > 0
0 β < 0

↓

H (x, ξ)|DGLAP =

{ 2x(1−x)

1−ξ2
|ξ| < x < 1

0 −1 < x < − |ξ|
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Tests (RDDA)

• Test with a DD inspired by Radyushkin
ansatz.

I Goal: retrieve known DD from
DGLAP GPD.

• Smooth function, vanishes at the
boundaries.

I Least-squares problem: residue
has a finite limit.

I Compromise between noise on
β = 0 and artifact on α = 0.

f (β, α) =


3
(
α2−(1−β)2

)
β

4(−1+β)
β > 0

0 β < 0

↓
H (x, ξ)|x>|ξ|

=

(1− x)3
(

3ξ + (2x − 5) ξ3 − 3
(
1− ξ2

)2
arctan ξ

)
2ξ3 (1− ξ2)2
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• Smooth function, vanishes at the
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First result

• Real application to an algebraic DSE
overlap model.

I Goal: extend the DGLAP GPD of
Ref. (Mezrag, 2015; Mezrag et al., 2016).

• Singularities in BMKS gauge:

I Physical or numerical?

• Smooth function in Pobylitsa gauge:

I (1− x)2 behavior of the GPD.
I Positivity of the Pobylitsa gauge.

f (β, α) =

{
? β > 0
0 β < 0

↓

H (x , ξ)|x>|ξ| = 30
(1− x)2

(
x2 − ξ2

)
(1− ξ2)2
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Quantitative comparison of DDs

Figure: Quantitative comparison for the Overlap results. Left: Theoretical
discretized DD. Middle: Numerical solution at tolerance 10−6. Right: Absolute
difference.

f (β, α) =


3(α2−(1−β)2)β

4(−1+β) β > 0

0 β < 0
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Quantitative comparison of GPDs

Figure: Quantitative comparison for the Overlap GPD obtained from the
numerical DD solution. Left: Theoretical GPD. Middle: Numerical solution at
tolerance 10−6. Right: Absolute difference.
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Quantitative comparison of GPDs

Figure: Quantitative comparison for the RDDA GPD obtained from the numerical
DD solution. Left: Theoretical GPD. Middle: Numerical solution at tolerance
10−6. Right: Absolute difference.
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Summary

• Extension of the algebraic DSE overlap model.

• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→ GPD.

I Both polynomiality and positivity!

• Important points:

I Compromise with respect to noise and
convergence.

I Pobylitsa gauge is promising.

• In the future:

I Different methods: Basis functions,
Bayesian methods, etc.

I Handling of errors.

• Thank you!

I Any questions?
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Additional slides

DSE Overlap DD

Recall the GPD: (Mezrag, 2015; Mezrag et al., 2016)

H (x , ξ) = 30
(1− x)2

(
x2 − ξ2)

(1− ξ2)2
. (24)

After trial and error (to reproduce the numerical result in Pobylitsa gauge that looks like
a polynomial):

fP (β, α) =
30
4
(
1− 3α2 − 2β + 3β2) . (25)

And with the mapping from Ref. (Mueller, 2014) (Eq. (10) of the article), we get the
singular indeed DD in BMKS gauge:

fM (β, α) =
30
4

(
α2
(

3− 3
(|α|+ β) 4

)
+ β2

(
3

(|α|+ β)3
− 3
)

+β

(
4− 4

(|α|+ β)3

)
+

2
(|α|+ β)2

− 2
)

+
30
4
(
1− α2) δ(β) . (26)
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