LACE and RFE: A combination of two algorithms applied to the forecasting of business profitability

Javier De Andrés Pedro Lorca Antonio Bahamonde Juan José Del Coz University of Oviedo

DIFFERENT APPROACHES FOR THE FORECASTING OF ECONOMIC PHENOMENA

- Regression analysis and classification techniques are two of the most popular approaches for the forecasting of economic phenomena
- · Drawbacks:
 - Regression analysis: The functional form of the relationship among many variables is not easy to determine
 - Classification techniques: If the variable to analyze/forecast is continuous, it has to be discretized, and this implies loss of information

AN ALTERNATIVE: THE APPROACH BASED ON PREFERENCES

 The objective is to predict if a certain company/individual/country will have in the future a higher level of a certain continuous variable than another company/individual/country

Advantages for analysts and researchers:

- The loss of information is smaller than using classification systems
- There is no need to determine the exact functional form of the relationship among the variables under study

ALGORITHMS FOR LEARNING PREFERENCES

- The primary data set is a collection of preference judgments: pair of vectors (v,u) for one of which a preference is expressed
- In our problem, v and u are vectors describing features of two companies that are being compared
- The preference relation is determined by the variable under study, i.e. profitability

LACE (LEARNING TO ASSESS FROM COMPARISON EXAMPLES)

- This algorithm estimates a linear function f (the assessment function or ranking function) which maximizes the probability of having f(v)>f(u) whenever v is better than u
- This function is determined by a vector w
- The estimation of w is a NP-hard problem
- It can be approximated through an iterative procedure similar to that used in the induction of oblique decision trees

FEATURE SELECTION FOR LEARNING PREFERENCES

- Learners' generalization performances can be improved when they are given only the information supplied by relevant features
- We use the Recursive Feature Elimination (RFE), which is a backward feature elimination process
- Based in the results of LACE, a list of feature subsets is obtained, each one containing a different number of features
- Then, a metric-based method called ADJ (ADJusted distance) is used to choose the appropriate level of complexity required to fit the data, that is, the subset that leads to the better results

- Medium sized companies: more than 100 employees and fewer than 250 (unlisted companies)
- Financial statements obtained from the Spanish edition of Bureau Van Dijk-Informa database
- Years under study 1998, 1999, 2000, 2001
- After the filters: 2,360 firms

- Average values for the years 1998 and 1999
- Limitation: Certain information not contained in the annual accounts
- Based on prior research eight dimensions were selected
- To avoid multicollinearity, each dimension is represented by only one financial ratio

Dimension	Variable	Code
Debt quality	CurrentLiabilitiz	V1
	TotalDebt	
Indebtedness	EquityCapital	V2
	TotalDebt	
Use of fixed capital	TangibleFixedAssets+IntangibleFixedAssets	V3
	TotalEmployment	
Debt cost	Financia Expenses	V4
	TotalDebt	
Short-term liquidity	CurrentAssets	V5
	CurrentDebt	
Share of labour costs	LabourCost	V6
	AddedValue	
Size	Net Sales (EUR thousands)	V7
Average sales per employee	Net Sales(EURthousand)	V8
	Total Employment	

THE TESTS

- Test n. 1: Each company is compared with the rest of firms included in the sample
- Test n. 2: Each company is compared only with the firms in the same NACE sector
- Test n. 3 : Each company is compared only with the firms with the same four digit code within the Spanish SIC

• Test n. 4:

- Four groups of firms determined by the quartiles of the distribution of the financial profitability
- Each company is compared with 10 randomly selected from the three groups not containing the company
- Test n.5: Similar to n. 4, the difference is that the two intermediate quartiles are deleted from the sample
- Test n. 6: The function inducted in test n. 5 is used to predict one to one comparisons between every pair of companies in the whole sample

THREE VERSIONS FOR EACH TEST

- Absolute: Only absolute variables (V1 to V8 and VARV1 to VARV8) are included in the set of predictors
- Relative: Only relative variables (V1 to V8 and VARV1 to VARV8) are included in the set of predictors
- Complete: All the variables are included in the prediction set

RESULTS OF THE TESTS FOR THE ABSOLUTE SET OF VARIABLES

		Num.									VAR							
Test	Error	Var.	V1	V2	V3	V4	V5	V6	V7	V8	V1	V2	V3	V4	V5	V6	V7	V8
Tl	30.84%	11	X	+	-	ł	Х	-	-	X	X	ł	-	-	X	-	+	-
T2	30.02%	13	+	+	-	+	-	-	-	X	X	+	-	-	X	-	+	-
T3	35.73%	2	X	X	X	X	X	-	X	X	X	X	X	X	X	-	X	X
T4	27.82%	9	ł	ł	-	ł	X	-	X	X	X	ł	X	-	X	-	+	X
T5	17.99%	3	X	Х	-	Х	Х	-	X	X	X	X	Х	Х	X	-	Х	X
T6	29.60%	3	Х	Х	-	Х	Х	-	Х	X	X	Х	Х	Х	Х	-	Х	X
-																		

RESULTS OF THE TESTS FOR THE RELATIVE SET OF VARIABLES

		Num.									VAR							
Test	Error	Var.	RV1	RV2	RV3	RV4	RV5	RV6	RV7	RV8	RV1	RV2	RV3	RV4	RV5	RV6	RV7	RV8
T1	31.49%	11	ł	ł	-	ł	Х	-	X	Х	Х	ł	-	-	Х	-	ł	-
T2	30.69%	12	+	+	-	ł	Х	-	-	X	Х	+	-	-	Х	-	ł	-
T3	29.50%	12	+	+	-	ł	Х	-	X	-	Х	+	Х	-	-	-	ł	-
T4	27.21%	12	X	+	-	ł	Х	-	-	X	+	ł	-	-	Х	-	ł	-
T5	15.88%	5	X	Х	-	ł	Х	-	X	Х	Х	Х	-	Х	Х	-	Х	X
Tb	28.97%	5	Х	X	-	ł	Х	-	Х	X	Х	X	-	X	X	-	X	X

RESULTS OF THE TESTS FOR THE COMPLETE SET OF VARIABLES

		Num.									VAR							
Test	Error	Var.	V1	V2	V3	V4	V5	V6	V7	V8	V1	V2	V3	V4	V5	V6	V7	V8
T1	29.96%	23	X	ł	-	-	ł	-	-	X	ł	X	X	ł	ł	-	-	X
T2	31.70%	8	X	X	-	+	X	X	X	X	X	X	X	X	X	X	X	X
T3	35.76%	2	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
T4	26.72%	13	X	X	-	+	X	-	+	X	X	X	X	X	X	-	+	X
T5	13.77%	14	X	+	-	+	X	_	+	X	X	X	-	-	X	-	X	ł
Tb	27.27%	14	X	ł	-	ł	X	-	ł	X	X	X	-	-	X	-	X	ł

DIRECTIONS FOR FUTURE RESEARCH

- The use of another techniques for the identification and deletion of irrelevant variables
- The study of listed firms, and the consideration of an extended set of possible features
- The study of other topics through LACE and RFE (i.e. financial distress prediction)