PROBLEMA DE CONTORNO PARA UNA ECUACIÓN DIFERENCIAL ORDINARIA

Nos planteamos resolver una ecuación diferencial de segundo orden del tipo

$$x'' = f(t, x, x'), \quad t \in [a, b],$$

con las condiciones de frontera

$$x(a) = \alpha, \quad x(b) = \beta.$$

Este problema así planteado se denomina un problema de contorno o con valores en la frontera. En particular estudiaremos el caso en el que el problema de frontera es lineal, es decir cuando la función f es de la forma

$$f(t, x, x') = p(t)x' + q(t)x + r(t),$$

donde p(t), q(t), y r(t) son funciones arbitrarias.

Teorema de existencia y unicidad de soluciones del problema de contorno

Si el problema de valor en la frontera

$$x'' = p(t)x' + q(t)x + r(t), \quad t \in [a, b], \quad x(a) = \alpha, \quad x(b) = \beta,$$
 (1)

cumple

- 1) p(t), q(t) y r(t) son funciones continuas en [a, b],
- **2)** q(t) > 0 en [a, b],

tiene solución única x(t) en [a, b].

El método que damos a continuación, para resolver un problema lineal con valores en la frontera, se basa en descomponer este problema en dos problemas de valor inicial para ecuaciones diferenciales de segundo orden.

El método del disparo lineal.

Si denotamos por u(t) la solución única del problema de valor inicial

$$u'' = p(t)u' + q(t)u + r(t), \quad t \in [a, b], \quad u(a) = \alpha, \quad u'(a) = 0,$$

y por v(t) la solución única del problema de valor inicial

$$v'' = p(t)v' + q(t)v, \quad t \in [a, b], \quad v(a) = 0, \quad v'(a) = 1,$$

entonces la función

$$x(t) = u(t) + \frac{\beta - u(b)}{v(b)}v(t)$$

es la única solución del problema de contorno (1).

Se demuestra que si se cumplen las hipótesis del teorema de existencia y unicidad, la solución del segundo problema de valor inicial v(t) cumple $v(b) \neq 0$.

En este segundo método la idea consiste en reemplazar las derivadas en la ecuación diferencial por una aproximación a las mismas y resolver el sistema de ecuaciones lineales obtenido.

El método de diferencias finitas.

Para resolver el problema de contorno (1) dividimos el intervalo [a,b] en N+1 subintervalos de amplitud $h=\frac{b-a}{N+1}$ y con extremos en los nodos $t_i=a+ih$ para $i=0,1,\ldots,N+1$. En los puntos interiores, $i=1,\ldots,N$ la ecuación diferencial a aproximar es

$$x''(t_i) = p(t_i)x'(t_i) + q(t_i)x(t_i) + r(t_i),$$
(2)

Si $x \in C^4[a,b]$ podemos, para aproximar las derivadas, usar las fórmulas de las diferencias centradas

$$x'(t_i) = \frac{1}{2h}[x(t_{i+1}) - x(t_{i-1})] + \mathcal{O}(h^2), \quad x''(t_i) = \frac{1}{h^2}[x(t_{i+1}) - 2x(t_i) + x(t_{i-1})] + \mathcal{O}(h^2).$$

Sustituyendo en (2) nos queda

$$\frac{x(t_{i+1}) - 2x(t_i) + x(t_{i-1})}{h^2} = p(t_i) \left[\frac{x(t_{i+1}) - x(t_{i-1})}{2h} \right] + q(t_i)x(t_i) + r(t_i) + \mathcal{O}(h^2), \quad i = 1, \dots, N.$$

Despreciando los términos de orden $\mathcal{O}(h^2)$ y denotando $\omega_0 = \alpha$, $\omega_i = x(t_i)$, $\omega_{N+1} = \beta$, para $i = 1, \dots, N$ se obtiene la ecuación en diferencias

$$\frac{2\omega_i - \omega_{i+1} - \omega_{i-1}}{h^2} + p(t_i) \left[\frac{\omega_{i+1} - \omega_{i-1}}{2h} \right] + q(t_i)\omega_i = -r(t_i), \quad i = 1, \dots, N,$$

$$(3)$$

que se usa para calcular aproximaciones numéricas a la solución del problema (1).

Multiplicando por h^2 la ecuación (3) se puede reescribir como un sistema de ecuaciones lineales

$$-\left(1 + \frac{h}{2}p(t_i)\right)\omega_{i-1} + (2 + h^2q(t_i))\omega_i - \left(1 - \frac{h}{2}p(t_i)\right)\omega_{i+1} = -h^2r(t_i), \quad i = 1, \dots, N.$$
(4)

El sistema (4) es un sistema tridiagonal NxN que podemos escribir en forma matricial $A\omega = \mathbf{b}$, donde

$$A = \begin{pmatrix} 2 + h^2 q(t_1) & -1 + \frac{h}{2} p(t_1) & 0 \\ -1 - \frac{h}{2} p(t_2) & 2 + h^2 q(t_2) & -1 + \frac{h}{2} p(t_2) \\ & \ddots & \ddots & \ddots & \ddots & \\ & & -1 - \frac{h}{2} p(t_{N-1}) & 2 + h^2 q(t_{N-1}) & -1 + \frac{h}{2} p(t_{N-1}) \\ & 0 & -1 - \frac{h}{2} p(t_N) & 2 + h^2 q(t_N) \end{pmatrix}$$

$$\omega = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \vdots \\ \omega_{N-1} \\ \omega_N \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} -h^2 r(t_1) + \left(1 + \frac{h}{2} p(t_1)\right) \omega_0 \\ -h^2 r(t_2) \\ \vdots \\ \vdots \\ -h^2 r(t_{N-1}) \\ -h^2 r(t_N) + \left(1 - \frac{h}{2} p(t_N)\right) \omega_{N+1} \end{pmatrix}.$$

Los siguientes teoremas establecen bajo que condiciones el sistema tridiagonal anterior tiene solución única y una cota del error cometido en la aproximación.

Teorema de existencia y unicidad de solución del sistema tridiagonal

Si se cumple que

- 1) p(t), q(t) y r(t) son funciones continuas en [a, b],
- **2)** $q(t) \ge 0$ en [a, b],

3)
$$h < \frac{2}{P^*}$$
, siendo $P^* = \max_{t \in [a,b]} |p(t)|$.

el sistema tridiagonal $A\omega = \mathbf{b}$ tiene solución única.

Teorema de existencia de una cota del error

Si la solución del problema de contorno $x \in C^4[a,b]$ y estamos en las condiciones del teorema anterior, se cumple que para $i=1,\ldots,N$

$$|\omega_i - x(t_i)| \le h^2 \left(\frac{M_4 + 2P^*M_3}{12Q_*}\right) + \frac{1}{h^2} \left(\frac{2eps}{Q_*}\right),$$

siendo

$$M_3 = \max_{t \in [a,b]} |x^{IV}(t)|, \quad M_4 = \max_{t \in [a,b]} |x^{III}(t)|, \quad P^* = \max_{t \in [a,b]} |p(t)|, \quad Q_* = \min_{t \in [a,b]} |q(t)| > 0,$$

y eps la precisión de la máquina.

El primer sumando corresponde al error de truncamiento y el segundo al error de redondeo.

Referencias básicas: Burden y Faires [2002, Cap. 11]; Mathews y Fink [2000, Cap. 9].