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Abstract 

This project tries to solve a problem that the PepsiCo company proposes to us, which needs to 

improve the sales performance of a chain of supermarkets and hypermarkets in a member 

country of the European Union. 

To solve the problem, a recommender system based on non-negative matrix factorization is 

proposed, which is a type of collaborative filtering of the model-based type. This model will 

make recommendations to the lowest performing stores in this chain to transform them into 

higher performing stores. 

To optimize the model, a 5-fold cross-validation process is carried out, in which the value of the 

latent factors (k) is optimized, minimizing the error metrics RMSE and MAE for each pair of k 

choosing the value of k that least RMSE and MAE produces. 

To implement the model, a specific recommender systems library, a framework called Surprise, 

will be used in the python programming language. 

Key words: collaborative filtering (CF), non-negative matrix factorization (NMF), recommender 

system (RecSys). 
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1. Problem to solve 

PepsiCo Company has the 2019 monthly sales data of a well-known supermarket and 

hypermarket chain belonging to a member country of the European Union. Using these data, they 

prepared a classification of each of the chain's stores, according to their sales (of PepsiCo 

products) and their market share, as shown in the following figure: 

Sales 

 

 

 

 

   

Figure 1. Store classification scheme. Source: Own elaboration.  

 

The Project that PepsiCo proposes to us, is through the classification shown in the previous 

figure, to make type B stores and type C stores go to type A through a recommender system, 

which recommends to type B and type C stores the products that are sold in type A stores and are 

getting better performance. 

This master's thesis will focus on the development of this recommender system. 

 

2. The Dataset 

The Dataset that PepsiCo makes available to us is a dataset as follows: 

- 727666 instances. 

- 23 variables 

A B 

C D 

Market share 
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In which the monthly sales, market share, and units sold during 2019 of 496 stores of the 

previously mentioned chain are shown. Other variables such as the description of the products 

are also shown (in this work the description of the products will be coded), the class of the 

products, the barcode and the type of store among other variables, as shown in the following 

figure: 

 

 

 

Figure 2. fraction of available dataset.  

To better work with the dataset, we grouped it by store and by product, and added only the 

quantitative variables, averaging sales, market share, and units sold. In this way, we annualize 

these numerical variables to have only one data instead of 12 (corresponding to the months of 

2019). This grouped dataset would have the form: 

- 74153 instances 

- 5 variables 

 

Table 1. First 5 instances of the grouped dataset.  

 

Once this is done, we eliminate the products whose sales are negative during 2019 

(corresponding to returns from other stores) and the products whose sales are 0 during 2019 so as 

not to incur calculation errors as we will see later. 

We check if this grouped dataset has missing values: 
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Figure 3. Missing values per variable.  

As this grouped dataset does not contain missing values, there is no need to do any additional 

preprocessing. 

Since the recommender system that we will use requires a user-item matrix, in which the users 

would be the stores, the items would be the products and the values would be the sales that each 

store makes of a certain product, we created a dataset in which the instances correspond to each 

of the 496 stores, the columns correspond to the products, and the interior values correspond to 

the sales that each store makes of each product. 

Because not all stores sell all products, the result will be a sparse matrix, in which we will only 

have a record of the sales that a store makes of a certain product, with 0 being the products that 

the store does not sell. These 0 values are what we have to infer to make recommendations.  

This last dataset that we have created has the form of a user-item matrix with which matrix 

factorization-based recommender systems usually work. In our case, as we will see later, the 

Surprise library that we will use to implement our model, generates this user-item matrix 

internally, so we will have to input 3 columns from the grouped sales matrix calculated in the 

previous paragraph: store, item and sales, so that the framework Surprise generates the user-item 

matrix. 

The user-item matrix that most matrix factorization-based recommender systems would work 

with has the form: 

 

- 496 instances (number of stores) 

- 275 variables (number of products) 
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Table 2. First 5 instances of the sparse matrix user-item. 

The missing values proportion of user-item matrix is shown in the next figure: 

 

 

Figure 4. Pie chart of known and unknown values.  

 

3. Introduction 

The objective of a Recommender system (RecSys) is to recommend relevant items for users, 

based on their preference. In our case, the objective is to recommend relevant products for stores 

based on the underlying features behind the store`s sales. These features will be latent factors 

that our model will infer how we will explain later. 
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Along with this project, the store to which the recommendation is provided is referred to as the 

user, the product being recommended is referred to as an item and the values of the matrix user-

item denoted as R, represent the sales. 

The main families of methods for Recommender systems are content based systems, 

collaborative filtering systems, and hybrid systems (which use a combination of the other two): 

- Content-based recommender system: This method leverages the features of items to 

recommend other similar items. For example, if I am browsing for solid colored t-shirts 

on Amazon, a content based recommender might recommend me other t-shirts or solid 

colored sweatshirts because they have similar features (sleeves, single color, shirt, etc). 

- Collaborative filtering based recommender systems: This method uses the actions of 

users to recommend other items. The underlying assumption of the collaborative filtering 

approach is that if  person A has the same opinion as a person B on a set of items, A is 

more likely to have B's opinion for a given item than that of a randomly chosen person. 

Collaborative Filtering (CF) has two main implementation strategies: 

o Memory-based: This approach uses the memory of previous users interactions to 

compute users similarities based on items they have interacted with (user-based 

approach) or compute items similarities based on the users that have interacted 

with them (item-based approach). User-based collaborating filtering uses the 

patterns of users similar to me to recommend a product (users like me also looked 

at these other items). Item-based collaborative filtering uses the patterns of users 

who browsed the same item as me to recommend me a product (users who looked 

at my item also looked at these other items). A typical example of this approach is 

User Neighbourhood-based CF, in which the top-N similar users (usually 

computed using Pearson correlation) for a user are selected and used to 

recommend items those similar users liked, but the current user have not 

interacted yet. 

o Model-based: This approach, models are developed using different machine 

learning algorithms to recommend items to users. There are many model-based 

CF algorithms, like neural networks, bayesian networks, clustering models, and 

latent factor models such as Singular Value Decomposition and, probabilistic 

latent semantic analysis. 
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- Hybrid methods: Recent research has demonstrated that a hybrid approach, combining 

collaborative filtering and content-based filtering could be more effective than pure 

approaches in some cases. These methods can also be used to overcome some of the 

common problems in recommender systems such as cold start and the sparsity 

problem. 

To resolve our Recommender system, we will use a collaborative filtering, model-based 

approach: a variation of the latent factor model Singular Value Decomposition (SVD). 

3.1. Latent factor based collaborative filtering 

The basic idea of collaborative filtering methods is that these missing values can be imputed 

because the observed values are often highly correlated across various users and items. This 

similarity can be used to make inferences about missing values. Most of the collaborative 

filtering methods focus on leveraging either inter-item correlations or inter-user correlations for 

the prediction process. 

Latent factor based models can be considered as a direct method for matrix completion. It 

estimates the missing entries of the rating matrix R, to predict what items a user will most 

probably like other than the ones they have rated. The basic idea is to exploit the fact that 

significant portions of the rows and columns of the rating matrix are correlated. As a result, the 

data has built-in redundancies and the sales matrix R can be approximated by a low-rank matrix. 

The low-rank matrix provides a robust estimation of the missing entries. 

The method of approximating a matrix by a low-rank matrix is called matrix factorization. 

There are many different ways to factor matrices, Singular value decomposition (SVD) is 

particularly useful for making recommendations. At a high level, SVD is an algorithm that 

decomposes a matrix R into the best lower rank (i.e. smaller/simpler) approximation of the 

original matrix R. Mathematically, it decomposes R into two unitary matrices and a diagonal 

matrix: 

R=UΣVT 
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where R is the user-item matrix where the values are the sales, U is the user “features” 

matrix, Σ is the diagonal matrix of singular values (essentially weights), and VT is the item 

“features” matrix. U and VT are orthogonal and represent different things. U represents how 

much users “like” each feature and VT represents how relevant each feature is to each item. 

To get the lower rank approximation, we take these matrices and keep only the top k features, 

which we think of as the k most important underlying taste and preference vectors. 

The matrix factorization problem in latent factor based model can be also formulated as an 

optimization problem given by: 

minimize U, V     ∑ ∑ (𝐫𝐢𝐣 − (𝐔. 𝐕𝐓)𝐢𝐣)𝟐𝒏
𝒋=𝟏

𝒎
𝒊=𝟏      (1) 

where U and V are matrices of dimension m × k and n × k respectively, where k is the number of 

latent factors. However, in the above setting it is assumed that all the entries of the rating matrix 

R are known, which is not the case with sparse rating matrices. Fortunately, latent factor model 

can still find the matrices U and V even when the rating matrix R is sparse. It does it by 

modifying the cost function to take only known rating values into account. This modification is 

achieved by defining a weight matrix W in the following manner: 

Wij = 1 if rij is known; 0 if rij is unknown 

Then, we can reformulate the optimization problem as: 

minimize U, V     ∑ ∑ 𝐖𝐢𝐣(𝐫𝐢𝐣 − (𝐔. 𝐕𝐓)𝐢𝐣)𝟐𝒏
𝒋=𝟏

𝒎
𝒊=𝟏      (2) 

Since the rating matrix R is sparse, so the observed set of ratings is very small. As a result, it 

might cause over-fitting. A common approach to address this problem is to use regularization. 

The optimization problem with regularization is given by: 

minimize U, V         ∑ ∑ 𝐖𝐢𝐣(𝐫𝐢𝐣 − (𝐔. 𝐕𝐓)𝐢𝐣)𝟐 +  𝛌𝐤𝐔𝐤𝟐  +  𝛌𝐤𝐕𝐤𝟐 𝒏
𝒋=𝟏

𝒎
𝒊=𝟏   (3) 

The regularization parameter λ is always non-negative and it controls the weight of the 

regularization term. There are many variations to the unconstrained matrix factorization 

formulation (equation 3) depending on the modification to the objective function and the 
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constraint set. In this project, due to the sales values cannot be negative, we will use the next 

variation, which will be explained in the next point: 

- Non-negative matrix factorization (NNMF) 

This variation is very similar to SVD, explained at a high level above. The difference is that U 

and V are kept positive. 

4. The model 

Non-negative matrix factorization may be used for value matrices that are or should be non-

negative. As in our case, store sales cannot be negative, so it seems an appropriate model. The 

major advantage of this method is the high level of interpretability it provides in understanding 

the user-item interactions. The main difference from other forms of matrix factorization as SVD 

is that the latent factors U and V must be non-negative. Therefore, optimization formulation in 

non-negative matrix factorization is given by: 

minimize U, V           ∑ ∑ 𝐖𝐢𝐣(𝐫𝐢𝐣 − (𝐔. 𝐕𝐓)𝐢𝐣)𝟐 +  𝛌𝐤𝐔𝐤𝟐  +  𝛌𝐤𝐕𝐤𝟐 𝒏
𝒋=𝟏

𝒎
𝒊=𝟏   (4) 

subject to U ≥ 0, V ≥ 0 

Our implementation follows that suggested in [1], which is equivalent to [2] in its non-

regularized form. Both are direct applications of NMF for dense matrices [3]. 

To solve the optimization problem (equation 4) we will use stochastic gradient descent (SGD), 

one of the many optimization algorithms available. 

The optimization procedure is a (regularized) stochastic gradient descent with a specific choice 

of step size that ensures non-negativity of factors, provided that their initial values are also 

positive. 

After we have solved the optimization problem in equation 4 for U and V, then we can use them 

for predicting the values. The predicted values of user i for item j, denoted by ȓij, is given by: 

ȓ𝒊𝒋 = ∑ 𝐮𝐢𝐬 · 𝐯𝐣𝐬 𝒌
𝒔=𝟏           (5) 



9 

 

 

5. The code 

Once we have covered the necessary background to implement the basics of matrix factorization, 

now we are ready to implement a NMF based collaborative filter to make recommendations.  

We will use built-in functions in python for the implementation, specifically a framework called 

Surprise. Surprise is an easy-to-use Python scikit for recommender systems. 

5.1. Loading data and preprocessing 

First, we import the necessary tools and libraries from Python:  

 

Then, we load the dataset, do some replacing and cleaning, and set some options from the 

dataframe library to see the full documents:  

 

Then we group by store and product the dataset, annualize the quantitative variables:  
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and do some preprocessing: 

 

Then we configure the settings of Surprise library. Keep in mind that the surprise library 

configures the user-item matrix internally. For this reason, our input is not the user-item matrix 

directly, but we give it the user, item and sales columns and the library configure it internally: 

 

And finally, we configure the pie chart of the proportion of known values of the user-item matrix 

using matplotlib: 

 

Once we have loaded all the necessary libraries, we have the dataset ready, and we have prepared 

all the requirements of the surprise library, we are ready to optimize the model. 
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5.2. Optimizing the model 

 

An important decision is the number of latent factors to factor the user-item matrix. The higher 

the number of latent factors, the more precise is the factorization in the original user-item matrix 

reconstructions. Therefore, if the model is allowed to memorize too many details of the user-item 

matrix, it may not generalize well for data it was not trained on and would tend to overfitting. 

Reducing the number of factors increases the model generalization. 

We are going to create a training and validation process and optimize k by minimizing Root 

Mean Square Error RMSE and Absolute Mean Error MAE. 

Intuitively, the Root Mean Square Error will continuously decrease on the training set 

as k increases (because I am approximating the user-item matrix with a higher rank matrix). On 

the validation set, however, the error will eventually start increasing because the training set is an 

overfit representation of user sales. 

To optimize k, we are going to test the model performance via 5-fold cross-validation. In 5-fold 

cross-validation, the dataset is partitioned into 5 equal-sized subsets. Of the 5 subsets, a single 

subset is retained as the validation data for testing the model, and the remaining 4 subsets are 

used to train the model. The cross-validation process is then repeated 5 times, with each of the 5-

subsets used exactly once as the validation data. 

In order to optimize the number of latent factors, k, we are going to repeat the process described 

in the previous paragraph a number of times equal to the smallest dimension of the user-item 

matrix used, in this case, 276. Every 2 latent factors, we will perform the cross-validation 

process and obtain the mean of the RMSE and MAE metrics. We will store these metrics every 2 

k, and in this way, we will be able to graphically represent them and see for which k values are 

obtained lower RMSE and MAE. 

The lines of code to implement what is explained above are as follows: 
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Once we have obtained the RMSE and MAE averages for each pair of k values, we represent 

them graphically. To graphically represent the RMSE first we load matplotlib:  

 

After that, we represent k values and RMSE using the following code:  

 

The following figure is the one we get by executing the code above: 
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Figure 5. K values and RMSE per K.  

We can see that between the values of k 175 and 200 the lowest RMSE occurs. Now we 

represent k values and MAE using the following code:  
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The following figure is the one we get by executing the code above: 

 

 

 

 

 

 

 

 

 

 

Figure 6. K values and MAE per K.  

We can see that the values are repeated and between the values of k 175 and 200 the lowest 

MAE occurs. Now we represent k values and RMSE and MAE using the following code: 
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The following figure is the one we get by executing the code above: 

 

Figure 7. K values and RMSE and MAE per K.  

As we can see, for the values of k between 175 and 200 we obtain the lowest values of RMSE 

and MAE, therefore we will establish a value of k = 185 to train the model and obtain the 

predictions. 

 

5.3. Getting recommendations 

Once we have the optimal value of the model's latent factors, k=185, we can train it to infer the 

missing values of the user-item matrix and get recommendations. As we have already done a 

cross-validation process to calculate the optimal value of latent factors k, we will train the model 

with the entire dataset, in order to be able to infer all the missing values of the user-item matrix 

and to be able to make personalized recommendations for each store. 
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Using the following code, we train the model and get the user-item matrix approach: 

 

What this code snippet returns is a numpy matrix with the approximation of the user-item matrix 

calculated using 185 latent factors. To transform it into a dataframe we use the following code: 

 

The resulting dataframe has the same shape as the matrix user-item shown before, but there are 

no missing values. Note that the known values from the original user-item values are slightly 

different. This is because they have been computed again using the low-rank matrices in which 

we decomposed the original user-item matrix before:  

 

 

Table 3. First 5 instances of the filled matrix user-item. 



17 

 

To verify that we have had no errors passing the approximation numpy matrix to a dataframe, we 

check a specific store and product value to see if the inferred value matches our data frame using 

the following code: 

 

As we can see, the prediction for a specific user and item matches our dataframe value for that 

specific user and item, so we can be sure that the dataframe is correct.  

Once we have the user-item matrix with no missing values, and having verified that the 

dataframe matches the numpy matrix values, we can define a function that returns 

recommendations on the products that could work best for a specific store among the products 

that the store does not sell. 

To do this, we will first filter a specific store from the user-item array without missing values, 

which will give us the recommendations for the store. Then we will filter the same store of the 

grouped dataframe to obtain the products that the store already sells. Finally, we will remove the 

products that the store already sells from the recommendations and we will order the results in 

descending order in order to make the recommendations. 

As we explained above, we first filter the recommendations by a specific store. After that, from 

the grouped dataframe we obtain the annualized sales by product of the specific store. We print 

the number of products that the store already sells, and the number of recommendations we will 

make. Finally, we added information to the recommendations of the class and the group of 

products to compare the results with those of the classification of type A stores that we saw in 

point 1. 

This described process is implemented with the following lines of code: 
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To call the function we have to specify: 

 

- User-item matrix of recommendations. 

- Specific store to which we want to make recommendations. 

- General sales dataframe without grouping to extract information. 

- Grouped annualized sales dataframe. 

- A number of products we want to recommend. 

 

We call the function using the following code: 
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What the function returns to us are two tables, one with the products that the store already sells 

ordered in descending order: 

 

 

Table 4. First 10 instances of the products that the store already sells. 

And another with as many recommendations as we have indicated to the function, with the class 

and group of recommended products:  

 

Table 5. Recommendations to a specific store. 
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6. Results 

The results obtained in the previous section are the recommendations that the recommender 

system designed in this project makes to a specific store. These recommendations are intended to 

make type B and C stores become type A thanks to the recommendations offered by this 

recommender system. 

PepsiCo tell us that for that chain of supermarkets and hypermarkets in that country in Europe, 

the group that has the most sales is SNACKS, therefore it makes sense that for a specific store, 

products from the best-selling group are recommended if the store does not still sell it, because 

the stores around it will surely get good performance with those products. 

As possible points of improvement we highlight the following: 

- It would be interesting to be able to personalize the recommendation for each class. So that the 

classes of each store that have the least sales can be reinforced. 

- In this model, regularization factors of 0.02 have been considered. It would be interesting to 

optimize these factors to see with what value we obtain lower RMSE and MAE. The Surprise 

library has a functionality that optimizes all the parameters of the chosen algorithm with respect 

to an error metric. It would be interesting to implement this functionality. 

- Our model has been trained with annualized sales. Being a wide continuous variable (0: 

2452.93) the error metrics RMSE and MAE give high values compared to other matrix 

factorization models that use smaller ranges. Perhaps it would be interesting to discretize the 

sales variable in a range of 1: 5 to be able to compare the model with others. 

Regarding the model, the field of matrix factorization research applied to recommender systems 

is extremely active. One particularly effective strategy is to combine matrix factorization and 

neighborhood methods into one framework, as it happens in [4]. 
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