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Abstract 

Knowledge Discovery in Databases makes possible analysing the cybercriminal activity on 

Bitcoin Market. Ransomware attacks are one of the most dangerous related crimes in the coins 

market; this type of malware forces victims to pay after encryption of the victim’s file. This 

Master’s dissertation aims to analyse this context using machine learning techniques through 

bitcoin transactions data set. The baseline data set containing all the attributes has been compared 

with two reduced subsets applying feature selection methods in an independent way: Extended 

Correlation-based Feature Selection (eCFS) and Correlation-based Feature Selection with 

Exhaustive Search (XCFS). CART from the trees’ family, Random Forest and XGBoost, as 

ensemble methods, and kNN, which is lazy algorithm, have been selected to achieve our results. 

We focus on kappa and accuracy metrics to evaluate on unseen data the trained classification 

models, and precision, recall and f1-score to study the detection performance on ransomware 

classes studied.  

JEL classification: D47, E42, G10, K42. 

Key words: KDD, Bitcoin Market, Supervised Machine Learning, Data Mining, Big Data, CFS, 

Feature Selection, Classification. 
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Resumen 

La metodología Knowledge Discovery in Databases posibilita el análisis del cibercrimen en el 

mercado de Bitcoin. Los ataques de ransomware son uno de los delitos más peligrosos en el 

mercado de las criptomonedas; este tipo de malware obliga a las víctimas a pagar después de 

cifrar el archivo de la víctima. Este TFM tiene como objetivo detectar ransomware utilizando 

técnicas de aprendizaje automático utilizando un conjunto de datos de transacciones de bitcoin. 

El conjunto de datos base se ha comparado con dos subconjuntos reducidos que aplican métodos 

de selección de atributos: correlación extendida (eCFS) y correlación con búsqueda exhaustiva 

(XCFS). Los modelos CART, Random Forest, XGBoost, y kNN, han sido seleccionados para 

llevar a cabo la experimentación. La precisión de los modelos ha sido comparada con las 

métricas AUC y kappa de Cohen. La especificidad, la sensibilidad y f1-score muestran el 

rendimiento en la detención de las clases de ransomware estudiadas. 
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  Introduction  

Cryptocurrencies are getting a prominent place on global monetary transactions (Liu, Jiang, Liu, 

& Tse, 2021). Cryptocurrencies are digital currencies whose transactions are maintained and 

verified through a decentralized system with the use of cryptography and not by a centralized 

system. The bitcoin market has been the top cryptocurrency by market capitalization since the 

blockchain transaction started. The bitcoin network is a public and distributed ledger where all 

transactions append between two different addresses and is recorded on bitcoin blockchain built 

and secured by bitcoin miners, who solve complex cryptographic problems through their own 

computing power and verify blocks and transactions (Goldsmith, Grauer, & Shmalo, 2020). This 

process establishes a huge record of data which is quickly expanding and allows the chance to 

use it to analyse the human behaviour in the bitcoin market, this analysis is often called 

blockchain analysis (Liu et al., 2021) and is a powerful tool against cybercriminal activity. The 

European Commission defined cybercrime as: “criminal acts committed using electronic 

communication networks and information systems or against such networks and systems” 

(Koops, 2010). Most popular cybercrime involves phishing scams, scamming activity, and 

hacking of wallets or transactions. In this context, Ransomware is a type of malware which 

prevents users from accessing their personal online accounts or personal files to require a ransom 

payment to regain their access. Ransomware can lock access to resources and encrypt their 

content and is able to infect mobile devices and IoT devices. In most cases, cryptocurrency 

payments have been selected by ransomware owners as the established payment. Recent 

computer hacks such as CryptoLocker, CryptoWall, DMA Locker and WannaCry use bitcoin 

network to ransom (Paquet-Clouston, Haslhofer, & Dupont, 2019a). Transactions stored in the 

public ledger that Blockchain constitutes do not require the presence of a central authority. The 

transactions based on blockchain technology have a pseudo-anonymous based on this situation, 

and criminals can take advantage of it to extort money from their victims without leaving any 

trace. But the collection of huge data sets from cryptocurrency transactions can become the first 

step to find the trace of ransomware activity. 

Knowledge Discovery in Databases (KDD) is a process which consists of analysing useful 

information from relevant and important sources with any pre-processing or transformation of 
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the database to extract knowledge according to the specification of measures and thresholds 

(Montalvo-Garcia, Quintero, & Manrique-Losada, 2020). This process starts with the creation of 

a target data set, or making data samples or subset of variables, where discovery will be done. 

After that, target data could need being cleaned or pre-processed to obtain consistent data. 

Transformation methods may be used to reduce the dimensionality of data. There is an important 

phase during KDD process which consists of the searching for patterns of interest, this stage is 

called Data Mining (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Finally, the patterns are 

evaluated and interpretated in order to reach conclusions of the extraction of knowledge. 

Machine learning (ML) (Sarker, 2021) is becoming the optimal technology to analyse patterns on 

the data from the current age of the Fourth Industrial Revolution (Schwab, 2017) (4IR or 

Industry 4.0). The knowledge of artificial intelligence has achieved the development of data 

analysis techniques that automates the making of analytics models to reach better results. 

Machine learning techniques can be classified into two different categories, supervised and 

unsupervised learning models. On the one hand, supervised models (Sathya & Abraham, 2013) 

are based on evaluating a training dataset from data with an assigned correct classification. On 

the other hand, unsupervised models (Sathya & Abraham, 2013) are those where the learning is 

used to find hidden patterns in non-classified input data. The unsupervised context means that 

the algorithm may organize information and learn to achieve the potential solution.  

This Master’s dissertation aims to develop a KDD process through the use of a high volume 

dataset from bitcoin transactions (Akcora, Cuneyt G., Li, Gel, & Kantarcioglu, 2020) applying 

Data Mining techniques and making data samples, pre-processing data and reducing the 

dimensionality of data and searching patterns of interest in dataset in order to evaluating results 

with different metrics through  machine learning methods. Specifically, the objective is 

ransomware (Brewer, 2016) detection through supervised learning classifier algorithms applying 

feature selection techniques and comparing with the base scenario where no data selection takes 

place.  
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 State-of-the-art 

The first study based on the cryptocurrency transaction history was conducted by Reid and 

Harrigan (F. Reid & M. Harrigan, 2011) in 2011, where the emerging structure from the Bitcoin 

network was revealed and they demonstrated the forensic capabilities of bitcoin transaction data. 

Since them, many studies through data mining techniques have been successfully applied with 

the use of cryptocurrency transactions data. Although it is easier to find more literature in the 

field of supervised learning, the related work has been applied through unsupervised and 

supervised learning models. While supervised learning has been used in price prediction, 

detention of fraud activities or cybercrime and other purposes such as de-anonymizing 

cryptocurrencies transactions, unsupervised learning studies have been concentrated in the 

detection of anomalies through the cryptocurrency networks.  

Phan and Lee (Pham & Lee, 2016) used three unsupervised learning methods, k-means 

clustering, Unsupervised Support Vector Machines (modified SVM)  and Mahalanobis distance 

based method through two graph of Bitcoin Network, one graph has used as nodes and in the 

other the nodes are transactions. Their work focused on the detection of anomalies in Bitcoin 

transaction network, involving a more general searching than the fraud activities detection. Chen 

et al. (Chen, Ting et al., 2020) wrote the first systematic investigation on Ethereum transactions 

using graph analysis, a new way to collect the transaction data is proposed  to make money flow 

graph, smart contract creation graph  and smart contract invocation graph to analyse more 

activities on Ethereum Network and analysing attack forensics and anomaly detection via cross-

graph analysis.  

In the line of price prediction, Jang and Lee (Jang & Lee, 2017) presented empirical studies able 

to show the effect of Bayesian networks in predicting Bitcoin price time series, and interpreting 

the high volatility of Bitcoin price on the date of their paper was written, by relevant features 

from Blockchain information of Bitcoin network. The results reached are compared with other 

linear and non-linear benchmark models. Jay et al. (Jay et al., 2020) trained LSTM (Long Short-

Term Memory) models and MLP (Multi-Layer Perceptron) models for Bitcoin, Ethereum and 

Litecoin price prediction. The proposed approach is based on random walk theory from financial 

market used for modelling stock prices. The results achieved are superior to results from the 
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deterministic models applied in previous papers. Saad et al. (Saad, Choi, Nyang, Kim, & 

Mohaisen, 2019) reached an accuracy over to 99% for Bitcoin and Ethereum prediction with 

their work. Linear regression, Random Forest (RF), and Gradient Boosting (GB) have been used 

as regression models to predict the prizes. They also applied LSTM networks, based on recurrent 

neural networks keeping a continuous set of data for a long time, and reaching high accuracy 

than previous works.  

The literature where classification learning is applied can be grouped in two categories, binary 

classification, and multi-class classification. Ranshous et al. (Ranshous et al., 2017) 

distinguished from previous works representing the multi-way relation between transactions and 

addresses in the Bitcoin network as directed hypergraph model. They searched a potential 

laundering pattern through binary classification models, testing Random Forest, AdaBoost, 

Linear SVM, Perceptron and Logistic Regression with features from different characteristics of 

exchange and non-exchange addresses, and reaching the best perform with Random Forest and 

AdaBoost attaining high accuracy labelling addresses as being owned by exchanges or not. 

Bartolleti, Pes and Serusi (Bartoletti, Pes, & Serusi, 2018) study Ponzi schemes on the Bitcoin 

blockchain via imbalanced data set from Bitcoin transactions. They selected 5 different features 

from 32 features based on Bitcoin addressed characteristic to applied data mining and feature 

selection techniques with binary classification through RIPPER, Bayes Network and Random 

Forest classifiers. They consider Random Forest with cost sensitive learning the most effective 

model for detecting Ponzi schemes on Bitcoin Blockchain, which achieved a low number of false 

positives. Weber et al. (Weber et al., 2019) contributed to literature with a binary classification 

task predicting illicit transaction using a time series graph of over 200K Bitcoin transactions, 

234K directed payment flows and 166 features. They tested a variation of Logistic Regression, 

Random Forest, MLP and Graph Convolutional Networks (GCN), and they found special interest 

on GCN as a new method for capturing relational information. Their results achieved showed the 

superiority of Random Forest. Chen et al. (Chen, Weili, Zheng, Ngai, Zheng, & Zhou, 2019) also 

study Ponzi schemes which are hired as smart contracts, they called these Ponzi schemes as 

smart Ponzi schemes and obtained examples by manually checking more than 3000 open source 

smart contracts on the Ethereum network. Two types of features have been extracted to perform 

a binary classification model to detect smart Ponzi schemes. Their proposed model performs 
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better results than many traditional classification models, they achieved estimating more than 

500 smart Ponzi schemes through Ethereum network.  

Most of multi-class learnings applied in the previous researches have been focused on solving 

the issues derived from Blockchain pseudo-anonymity. Jourdan et al. (Jourdan, Blandin, Wynter, 

& Deshpande, 2018) defined novel features for entity classification from a graph neighbourhood 

perspective based on Bitcoin exchange transactions modelling the Bitcoin Blockchain such as 

directed weighted bipartite graph. They analysed the anonymity properties of Bitcoin Networks 

as a classification problem by a set of categories of Bitcoin users represented by 5 entity 

categories, exchange, service, gambling, mining pool and DarkNet Marketplace. Decision Tree 

(LightGBM) and Logistic Regression performances have been analysed on their work, adding 

features to the generic model based on their ease of access. They achieved an accuracy of 41% in 

the identification of entity type, the model choice has not been significance in the classification 

performance, but the use of more sophisticated features provides a drastic improvement. Toyoda 

et al. (Toyoda, Ohtsuki, & Mathiopoulos, 2018) proposes the first multi-class identification of 

Bitcoin addresses to identify among seven classes via supervised learning, exchange, faucet, 

gambling, investment scam, marketplace, mining pool and mixer. Extreme Gradient Boosting 

(XGBoost), Random Forest, SVM and neural network have been trained via 26000 Bitcoin 

addresses that have been used from January 2009 to February 2017. The best performance 

achieved 72% of accuracy in the identification. Zolal et al. (Zola, Eguimendia, Bruse, & Urrutia, 

2019) present a method to attack Bitcoin anonymity by leveraging a cascading machine learning 

approach which can work with only few features directly extracted from Bitcoin blockchain data. 

The data set is composed of 311 different samples, and similar to other works, which is divided 

into six classes. GB, Adaboost and Random Forest are the models selected on their work to 

predict each class and improve the results obtained in the previous works. Sun Yin et al. (Sun 

Yin, Langenheldt, Harlev, Mukkamala, & Vatrapu, 2019) present an approach for de-

anonymizing the Bitcoin Blockchain transactions through multi-class supervised learning with 

22 different imbalanced uncategorized clusters, 14 of them have been labelled such as 

ransomware or darknet-market. They utilized a sample of 957 entities with around 385 million 

transactions. They applied KNN, Decision Trees, Adaboost, GB, Random Forest, Extra trees, 

and Bagging classifiers. GB with default parameters reached a F1-score of 79.64% which 

provides a list of suspects who can belong to cybercriminal activities and may be used for further 
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investigation. Linoy et al. (Linoy, Stakhanova, & Ray, 2021) present an approach which finding 

affiliation between Ethereum addresses to undermine pseudo-anonymity of Ethereum 

transactions by grouping addresses were used to deploy smart contracts from the same authors by 

the use of stylometry techniques. The approach is validated on real-word scammers’ data and 

Ponzi scheme-related contracts using supervised learning techniques.  

There are more than 500 known ransomware families, almost all of them demand payments in 

Bitcoin, and ransomware detection has become a specific field from cybercriminal activities 

studied in the related works where our research can fit. In this context, Cabaj, Gregorczyk, and 

Mazurczyk (Cabaj, Gregorczyk, & Mazurczyk, 2018) contributes with a Software-Defined 

Networking (SDN) based on the observation of network between communication of two families 

of ransomware, CryptoWall and Locky. The paper defends that HTTP messages’ sequences and 

their respective content sizes is enough to detect both families. The experimentation confirms 

that SDN analysis is efficient and feasible in the ransomware detection, which can reach a 

detection rate of 97-98% with 1-2% or 4-5% false positives. WannaCry ransomware uses similar 

encryption techniques and attack methodologies as other ransomware families. Zimba, 

Simukonda, and Chishimba (Zimba, Simukonda, & Chishimba, 2017) discovered these 

characteristics analysing WannaCry ransomware samples based on malware-free infection 

vectors. The ransomware code is dissected by the perform of reverse-enginnering for further 

analysis. When a new paper of anti-malware software that improves detection accuracy is 

published, malware developers usually upgrade their attack methods to reduce the detection 

rates. Egunjobi et al. (Egunjobi, Parkinson, & Crampton, 2019) present a possibility of 

increasing the detection rates and classification by the use of static and dynamic features of 

ransomware through the application of supervised learning models such as instance-based, 

Random Forest, Naïve Bayes and SVM to classify Locker Ransomware and Crypto Locker 

Ransomware, and using a data set from a ransomware repository and goodware from Portable 

Apps. Paquet-Clouston et al. (Paquet-Clouston, Haslhofer, & Dupont, 2019b) propose a data-

driven method based on known clustering heuristics for identifying ransomware information 

from Bitcoin transactions and providing a better picture of global impact of ransomware 

activities. The method has been applied on a sample of 35 different ransomware families finding 

new addresses related to each family. The rising of ransom payments over time and the direct 

effect of each ransomware family have been analysed in this work. Almashhadani et al. 
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(Almashhadani, Kaiiali, Sezer, & O’Kane, 2019) present a multi-classifier intrusion detection 

system to detect ransomware network activities in two independent binary classifiers, packet-

based classifier, and flow-based classifier. Random Forest, Random Tree, LibSVM and Bayes 

Net were selected to build each classifier, and the algorithm which provides better accuracy is 

selected by each classifier autonomously. Locky family is selected as a case studied to analysis 

the behaviour of crypto ransomware activities. There is a complex problem in ransomware 

detection related to these addresses that belong to same criminal actors which does not present 

common patterns associated. Dalal, Wang and Sabharwal (Dalal, Wang, & Sabharwal, 2021) 

introduce new algorithms for local clustering and supervised graph machine learning which 

achieve a 85% accuracy to differentiate between random, ransomware and gambling actor in 

local subgraphs of the known criminal actors.  

 Description of the Data 

The studied data set (Akcora, Cuneyt G. et al., 2020) contains information about daily 

transactions of bitcoin network through 2916697 instances and 10 variables. Table 1 collects the 

total of missing and different values for each variable. Missing values have not been found in the 

data set. In this way, it is not necessary to do any additional preprocessing. Two variables of 

measure of time have been collected in the data set, year, and day. The period of analysis data 

starts in 2011 and finishes in 2018, variable day has 365 different values. The data set contains a 

nominal attribute called Address with a lot of different values (a ninety per cent of the number of 

instances in the sample) which has not enabled to achieve any classification model after more 

than 120 hours in our preliminary experiments. This feature represents the address of 

transactions, and it has been removed to proceed with the analysis. The rest of variables are 

numeric variables and have been listed with their statistics characteristic in Table 1.  

Table 1. Values of variables in data set. 

Variable Mean Std. Dev. Min Max Different values Missing Values 

address - - - - 2631095 0 

year - - - - 8 0 

day - - - - 365 0 

length 45.009 58.982 0 144 73 0 

weight 0.546 3.674 0 1943.749 785669 0 

count 721.645 1689.676 1 14497 11572 0 

looped 238.507 966.322 0 14496 10168 0 
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Length quantifies mixing rounds on Bitcoin which means where transactions are received and 

distributed with similar amounts of coins in many rounds with new addresses for hiding the 

origin of coin. Weight is designed to quantify the merge behaviour, where coins in multiple 

addresses have been passed through merging transactions and collected in a final address. In the 

same way, Count feature represents information on the number of transactions. The count feature 

contains information of the number of transactions, and weight feature contains information of 

the quantity of transactions. Looped aims at counting how many transactions move coins on the 

network by using different paths, split their coins, or merge them in a single address. Finally, 

Neighbor is an integer variable, and it is the number of transactions which have common 

addresses as one of its output addresses and Income represents the total amount of coin output 

and it has been measured in Satoshi (Nakamoto, 2008) amount (1 bitcoin = 100 million satoshis).  

 

Figure 1. Correlation between variables. 

neighbors 2.207 17.919 1 12920 814 0 

income 4464889007.186 162685960669.345 30000000 49964398238996 1866365 0 

label - - - - 29 0 
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Figure 1 represents the relationship between the variables in the data set through the correlation 

relations. Each column and row represent a variable. The values inside the matrix are the Pearson 

correlation coefficient (Wang, 2013) between variables.  

 

 𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅𝑛

𝑖=1 )

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 (1) 

Where n is the size of the sample; 𝑥𝑖 , 𝑦𝑖 are the individual sample points and 𝑥̅, 𝑦̅ are the samples 

means. 

 

The nominal attributes have been converted in categorical variables to process with this 

representation. The highest values of correlation have been found between length and count, 

weight and neighbours, and count and looped.  

 

Table 2. Ransomware labels. 

ID Label Count 

29 white 2875284 

5 paduaCryptoWall 12390 

3 montrealCryptoLocker 9315 

1 princetonCerber 9223 

2 princetonLocky 6625 

4 montrealCryptXXX 2419 

11 montrealNoobCrypt 483 

7 montrealDMALockerv3 354 

12 montrealDMALocker 251 

9 montrealSamSam 62 

8 montrealCryptoTorLocker2015 55 

25 montrealGlobeImposter 55 

19 montrealGlobev3 34 

13 montrealGlobe 32 

6 montrealWannaCry 28 

23 montrealRazy 13 

28 montrealAPT 11 

15 paduaKeRanger 10 

10 montrealFlyper 9 

17 montrealXTPLocker 8 

16 montrealVenusLocker 7 

21 montrealXLockerv5.0 7 

24 montrealCryptConsole 7 

14 montrealEDA2 6 

20 montrealJigSaw 4 

18 paduaJigsaw 2 

22 montrealXLocker 1 

26 montrealSam 1 

27 montrealComradeCircle 1 
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Ransomware labels, which are listed in Table 2, have been obtained using Ransomware 

addresses taking three different studies: Montreal, Princeton, and Padua (Akcora, Cuneyt 

Gurcan, Li, Gel, & Kantarcioglu, 2019) through clustering process which analysed Ransomware 

behaviour similarity. The white label represents transactions that are free of ransom and stages 

the 98.58% of analysed transactions. It is relevant to stress that we are tackling with a multi-class 

classification problem with more than 25 classes and with an unbalanced data set. There are 

many labels with minuscule counts, and this situation represents an issue in a multi-class 

classification problem, there is not enough information which make possible a good performance 

in the classification of this labels. The data set has been subsampled to test our experiments using 

the top 6 labels listed in Table 2 to improve the detection of most common ransomware labelled, 

hence, the number of instances to conduct the experiments is 2915256. 
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 Experimentation 

4.1 Methodology 

The knowledge discovery process in the studied data set has been tedious because of the high 

volume of data and complexity and nature of data. The procedure of building classifier models 

for imbalanced data set such as our problem is a demanding task. Classic classifier models often 

cannot achieve good performance with high imbalance ratio in data set. Even if a high level of 

accuracy has been reached, this level can only represent the results achieved of classification on 

majority class, but it can be close to zero of the rest whole data set. This situation becomes more 

difficult when we are finding solution to an imbalanced multi-class problem. On one hand, 

resampling techniques can be applied in order to solve this issue and there are a huge record of 

different techniques, such SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002), a method 

which creates artificial samples belonging to the minority class, where new samples are called 

synthetic samples. Another method, ADASYN (He, Bai, Garcia, & Li, 2008) creates new 

instances depending on the relative weight of minority instances defined by proportion of 

majority class samples in the neighbourhood to determine the number of synthetic examples that 

will be created. Also, under-sampling approaches (Yen & Lee, 2006) can be applied to improve 

the classification accuracy for minority class reducing the number of majority class instances on 

training data. On the other hand, cost sensitive learning (Elkan, 2001) assigns a high cost to non-

true positive on classification of the minority class and reduces the overall cost through the 

development of a Cost Matrix (Ling & Sheng, 2008). Oversampling such as SMOTE or 

ADASYN makes more copies of existing instances which can have same effect than overfitting 

on learning process. Also, the new copies make the problem bigger and increasing the learning 

time. Undersampling approaches do not use potentially useful data and contributing to the loss of 

information on learning process. These techniques could not consider neighbour examples from 

other classes, and this can introduce additional noise to training data. The problem with cost 

sensitive learning is that there are not many implementations of all learning algorithms and could 

be hard finding a good Cost Matrix. Considering these disadvantages and due to the size of data 

set used oversampling and undersampling techniques have not been applied in this work. Instead 

of these techniques, kNN have been tested without any strategy mentioned, because kNN can be 

independent of imbalance data issues; Decision Tree, Random Forest have been tested using 
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different weights in all the classes misclassifying the white class to obtain better results on the 

rest of classes; and XGBoost have been tested by the optimization of max_delta_step parameter.  

The experimentation has been conducted by the equipment with the following settings: Windows 

10 as operative system (OS), CPU AMD Ryzen 4800 h 2.9 Ghz, 16 Gb of RAM memory and 

GPU RTX Nvidia 2060. Concerning the specific software for data two different tools have been 

used: the Weka (Waikato Environment for Knowledge Analysis) framework (Hall, Mark et al., 

2009) and Python language (VanderPlas, 2016) with the libraries Pandas and Numpy 

(McKinney, 2011), Scikit Learn (Pedregosa et al., 2011), and XGBoost implementation through 

Jupyter Notebook (Perkel, 2018) from Anaconda distribution platform. The data set has been 

divided into two subsets with a stratified hold-out cross validation (Ojala & Garriga, 2010) to 

ensure that samples on training and test sets have been organized in same proportion as in 

original data set. One quarter of instances (728814 instances) have been collected in testing sets, 

and the rest have been selected as training set (2186442 instances). All classifiers have been 

applied using the same training and testing sets. The files are available in github1 in order to 

make possible the reproduction of experiments by any interested person. 

4.2 Feature selection 

Feature Selection (FS) (Cai, Luo, Wang, & Yang, 2018) is a process to reduce the dimension of 

data set and makes more effectively and faster the learning of ML models, it consists in 

identifying the irrelevant and redundant features and remove as much of these feature as 

possible. Feature subset selection is the most common strategy within the FS area. In general, FS 

algorithms have two parts: an algorithm is used to generate proposed subsets of features selection 

and to find an optimal subset, and other part that evaluates the results of proposed feature subset 

and returning measure of goodness to the selection algorithm. FS have normally been grouped 

into two groups, filter, and wrapper. The difference depends on how the FS method works 

against inductive algorithm that will apply the selected subset. This paper focuses on the use of 

filter methods, but many of them have been applied. ReliefF is a method that selects the relevant 

features using a randomly picks of a sample of instances and assigns a weight for each feature 

 

1
 https://github.com/josanb12/KDD-Bitcoin 
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based on the Euclidean distance measure. The features are chosen after exhausting all instances 

in the sample using the order assigns of the weight feature. Neural-network feature selector 

(NNFS), Boosted Decision Stump FS (BDSFS), LVF, LVS, Sequential forward floating 

selection (SFFS) and sequential backward floating selection (SBFS) are other methods. 

However, methods based on a correlation measure (Hall, 1999) have been applied in this work. 

The feature subset is selected following a hypothesis that suggests that “a good feature subset is 

one that collects features which are highly correlated with the independent variable but are 

uncorrelated with the rest of variables”. Equation 2 (Kavipriya & Karthikeyan, 2017) is used to 

filter out the extremely correlated and unrelated features. 

 𝐹𝑠 =
𝑁𝑟𝑐𝑖̅̅ ̅

𝑁 + 𝑁(𝑁 − 1)𝑟𝑖𝑖
 (2) 

Where N is the number of features in data set, 𝑟𝑐𝑖 is the average feature correlation with the class 

and 𝑟𝑖𝑖 is the mean feature inter-correlation. The advantages (Kavipriya & Karthikeyan, 2017) of 

this method are that it needs less computational complexity compared to other method, and it 

scale well to high dimensional data set. However, this method depends on the model and can fail 

to fit well the data, but it does not ignore the communication with classifier such as other 

methods. This works is an extension of the results obtained on (Blanco & Tallón-Ballesteros, 

2021) using similar FS techniques. 

Extended Correlation-based Feature Selection (eCFS) (Tallón-Ballesteros, Cavique, & Fong, 

2019) and Correlation-based Feature Selection (XCFS) with Exhaustive Search (Mnich & 

Rudnicki, 2020) have been considered as feature subset selection methods. They have been 

applied using the Weka (Waikato Environment for Knowledge Analysis) framework (Hall, Mark 

et al., 2009).  

Table 3 summarizes the settings used in both methods and the feature selection obtained. The 

experiments have been conducted through three different cases, no feature selection applied 

called Base, eCFS where eFSS method applied, and XCFS where XFSS method applied.  
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Table 3. Feature selection procedures used in the experimentation. 

 

4.3 Metrics 

The overall classification accuracy may not be an appropriate metric in imbalanced data 

problems. A common classifier can predict every case as the majority class and still achieve very 

high level on accuracy metric. It is necessary to calculate alternative metrics such Cohen’s 

Kappa (Cohen, 1960) and ROC AUC score (Fawcett, 2006). In multi-class classification with 

learning extremely imbalanced data, the study of overall metrics is not enough, the difference 

among metric of each class is much relevant than binary classifications. For this purpose, 

precision, recall, and f1 measures of each class have been collected from each model applied. 

These metrics depend on confusion matrix results. Confusion matrix (Provost & Kohavi, 1998) 

contains information between actual and predicted classifications obtained by a classification 

algorithm. The size of a confusion matrix is (N, N) where N is the number of different classes in 

the problem. Figure 2 represents a confusion Matrix in multi-class case considering the class k (0 

≤ k ≤ n), where TN is the number of true negatives, TP is the number of true positives, and FN 

and FP are the number of false negatives and false positives respectively. 

Feature 
selection 

method 

Type Parameter/Property Value Features  
selected 

eCFS 

(Tallón-
Ballesteros et 

al., 2019) 

eFSS Attribute evaluation measure Correlation year, day, neighbor, 

income, weight, 
count, looped 

Search method Best First 

Consecutive expanded nodes without 
improving  

5 

Search direction Forward 

XCFS 

(Mnich & 
Rudnicki, 2020) 

XFSS Attribute evaluation measure Correlation year, day, neighbor, 

income Search method Exhaustive search 

Consecutive expanded nodes without 
improving  

5 

Search direction Forward 
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Figure 2. Confusion Matrix on multi-class case. Adapted from: (Flach, 2012). 

Precision is the capability of the classifier to not classify a negative sample as positive. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =  
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
 (3) 

 

Recall is the ability of the classifier to classify properly all the positive samples.  

 𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =  
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
 (4) 

 

F-1 score is the harmonic mean of precision and recall and is more sensitive to data distribution 

than other metrics, this made it more suitable measure for classification problems on imbalanced 

data set.  

 𝐹1𝑘 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑘
 (5) 
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Cohen’s Kappa (Cohen, 1960) is a statistic that scores the level of agreement in a classification 

problem.  

 

 𝑘 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 (6) 

Where 𝑝0 is the empirical proportional agreement between predicted values and actual values. 

This proportion can be calculated with the sum of the diagonal values of any confusion matrix 

divided by the sum of the rest of values of the confusion matrix. In addition,  𝑝𝑒 is the probability 

that true values and false values agree randomly. This metric has been applied using the default 

options implemented in scikit learn library on python. 

Receiver operating characteristic (ROC) (Fawcett, 2006) curve is a two-dimensional 

representation between true positive rate and false positive rate and may be used to evaluate a 

classifier performance, figure 3 represents an example of a ROC figure. To compare classifiers, 

it is possible to reduce ROC performance to a single value which can represent the performance 

obtained. AUC (Fawcett, 2006) score is the calculation of area under the ROC curve and its 

value is always between 0 and 1. However, a classifier should not have an AUC less than 0.5. 

AUC of a classifier represents the probability that the classifier will rank a randomly chosen 

positive instance higher than a randomly chosen negative instance (Fawcett, 2006). Equation 7 

and 8 clarified the concept of True Positive Rate and False Positive Rate represented on Figure 3. 

 

Figure 3. Example of ROC representation. Source: https://scikit-learn.org 
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 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7) 

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

The AUC score has been obtained by Scikit Learn library on Python, which is calculated through 

trapezoidal Rule Numerical Integration to find the area under ROC curve (Yeh, 2002). The area 

of trapezoid is: 

 ( 𝑥𝑖+1 – 𝑥𝑖 ) ( 𝑦𝑖 +  𝑦𝑖+1 ) / 2  (9) 

In the AUC case the formulation based in the last equation is: 

 

 ( 𝐹𝑃𝑅𝑖+1 –  𝐹𝑃𝑅𝑖 ) ( 𝑇𝑃𝑅𝑖 + 𝑇𝑃𝑅𝑖+1 ) / 2  (10) 

 

Where FPR represents false positive rate calculated by: 

  

 𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅 (11) 

 

Two strategies are currently supported to used AUC score in multi-class classification, one-vs-

one algorithm calculated by using the average of the pairwise ROC AUC scores between each 

label, and the one-vs-rest algorithm which computes the average of ROC AUC scores for each 

label against the rest. In this paper, a one-vs-rest strategies have been applied. The rest of 

parameters have been maintenance in the default option using scikit learn on python. 

4.4 Supervised Machine Learning. 

The problem of ransomware detection using the data set selected have been conducted via 4 non-

parametric models. CART, kNN, Random Forest and XGBoost have been the machine learning 

models selected based on previous related works studied in the same field.  
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4.4.1 K-Nearest Neighbors (kNN). 

K-nearest Neighbour (kNN) (Wu et al., 2008) classification is an instance-based learning or non-

generalizing learning method used to find a group of k objects during the learning from the 

training set which are closest to the test object and assign a label on the predominance class in 

this neighbourhood. A set of labels of objects, a set of stored records, a distance or similarity 

metric to calculate distance between object and the value of k, which represents the number of 

nearest neighbours, are the key elements of this approach. The k-nearest neighbours are 

identified, and the class label assigns of these neighbours are used to select the class label of the 

test object. The algorithm computes the distance or similarity between test objects and all the 

training objects to determine the nearest-neighbour list, them the test object is classified based on 

the majority class of its nearest neighbours: 

 Majority Voting = argmax𝑣 ∑ 𝐼(𝑣 = 𝑦𝑖)

(𝑥𝑖,𝑦𝑖)∈𝐷𝑧

 (12) 

Where v is a class label, 𝑦𝑖 is the class label for the ith nearest neighbours, and I is a function that 

returns the value 1 if its argument is true and 0 in other case. D is the set of k training object and 

z is the test object.𝐷𝑧 is the nearest-neighbours list. 

KNN is a lazy learning classifier (Flach, 2012) which requires computing the distance of the 

unlabelled object to all the objects in the labelled and can need a lot of computational time for 

large training sets but is possible to reach an efficient computational time using different 

techniques developed for that propose. KneighborsClassifier from scikit-learn has been applied 

which implements learning based on the number of neighbours within a floating-point value 

specified of each training point. 

4.4.2 Decision Tree (CART).  

The name of Decision Tree models is derived from a hierarchical model visually formed like a 

tree. This algorithm splits observations into multiple subsets, based on a decision node with a 

criteria determined from the features, and applying the most significant feature to perform the 

better split among the observations (Baesens, 2014). To perform the better split, the algorithm 

searches the most significant feature to be applied. The best split is choice computing an 



 

27 

 

impurity function or loss function based on three possible criteria, Misclassification, Entropy or 

Gini Index (Raileanu & Stoffel, 2004). Entropy shows the grade of homogeneity of a sample 

distribution, it means that in the scenario where classes are equally divided in two subsets, the 

entropy will be 1. When distribution becoming homogeneous, the entropy will be zero. G is the 

information gain and E the entropy in equation 13.  

 𝐺(𝑦, 𝑥) = 𝐸(𝑦) − 𝐸(𝑦, 𝑥) (13) 

Where E(y) represents the entropy in the class distribution before the split and E(y,x) the entropy  

after the subset has been split by the decision node. Target variable is y and x is the feature to be 

split on. Equation 14 lists the individual Entropy: 

 𝐸 = ∑ −𝑓𝑖𝑙𝑜𝑔(𝑓𝑖)

𝐶

𝐼=1

 (14) 

Where 𝑓𝑖 is the frequency of class i at a node and C is the number of unique class in the sample. 

To estimate the information gain, the total Entropy for the split is calculated. Equation 15 shows 

Gini Index (Raileanu & Stoffel, 2004) function which is another way to compute the impurity 

function.  

 𝐺 = ∑ 𝑓𝑖(1 − 𝑓𝑖)

𝐶

𝐼=1

 (15) 

Where G is the Gini Index and 𝑓𝑖 is the frequency associated to class i, derived from the class 

distribution in the subset. The algorithm seeks for the feature split with the leads which perform 

the best split of classes by the lowest Gini Index. Decision tree algorithms have different 

versions such as ID3, C4.5, C.50 and CART. Classification and Regression Trees (CART) (Loh, 

2008) have been applied using an optimized version available on scikit-learn library. 

4.4.3 Random Forest. 

Random Forest (Breiman, 2001) consists in a combination (ensemble) of individual decision 

trees training with a different random sample from data, generated by bootstrapping. Each tree is 

trained via different data, and observations are distributed by nodes which generate the tree 
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structure to reach a final node. The prediction of a new observation is obtained adding 

predictions from individual decision trees which are pooled to make the final prediction. Random 

Forest is referred as Ensemble technique because it uses a collection of results to achieve a final 

decision. Ensemble methods combinate multiple models to achieve better prediction than the 

individual original models. Two types of ensembles are the most popular: Bagging and Boosting. 

Random Forest constitutes a bagging technique (bootstrap aggregation) which aims to reduce the 

variance and improving the accuracy of predictions. Bagging on Random Forest can be 

explained by three steps. First, B training sets are generated via bootstrapping from original data 

set. Them, each B is trained by a tree without pruning. Finally, per each new observation, 

prediction of each B tree is obtained. The final prediction is the average of B prediction. Random 

Forest classifier has been tested via RandomForestClassifier from scikit learn library. 

4.4.4 Gradient Boosting (XGBoost). 

Gradient Boosting (Friedman, 2002) is a powerful algorithm in machine learning. It can be 

applied in regression and classification problems and is a generalization of AdaBoost algorithm. 

Gradient Boosting is an ensemble method which consists in learning models sequentially, each 

model fixes residual errors from previous models. First weak learner 𝑓1 predicts output variable 

y, and residual error 𝑦 − 𝑓1(𝑥) is calculated. A new model 𝑓2 aims at predicting residual error 

from 𝑓1 , and consecutively, this process is repeated M times, and each new model minimizes 

residual error from the previous model. This process is sensitive to overfitting, learning rate (𝜆) 

parameter can be applied to solve this problem. However, more models are needed to constitute 

the ensemble, but better results can be reached. Next formulation shows the process explained. 

 𝑓1(𝑥) ≈ 𝑦 (16) 

 𝑓2(𝑥) ≈ 𝑦 − 𝜆𝑓1(𝑥) (17) 

 𝑓3(𝑥) ≈ 𝑦 − 𝜆𝑓1(𝑥) − 𝜆𝑓2(𝑥) (18) 

 𝑦 ≈ 𝜆𝑓1(𝑥) + 𝜆𝑓2(𝑥) + 𝜆𝑓3(𝑥) + ⋯ + 𝜆𝑓𝑚(𝑥) (19) 

XGBoost (Chen, Tianqi & Guestrin, 2016) is an implementation of machine learning algorithms 

under the Gradient Boosting framework. XGBoost uses a parallel tree boosting that makes 
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possible solving many data science problems with less time and better accuracy, because of its 

scalability on all scenarios it runs more than ten times faster than other algorithms (Chen, Tianqi 

& Guestrin, 2016). In this paper XGBoost has been applied via XGBoost specific library 

(Brownlee, 2016)  implemented on python based on scikit learn library. 

4.4.5 Hyperparameters optimization.  

The parameters of each estimator used during experimentation have been optimised by cross-

validated grid-search over a specify parameter grid. Cross validation (Flach, 2012) is a 

resampling process to obtain different portions of data set to testing the model training on 

different iterations. In our case, 5 partitions have been used on optimization of parameters for 

each model. Grid Search (Liashchynskyi & Liashchynskyi, 2019) is a traditional method of 

hyperparameters searching over a given subset of the hyperparameters grid from training 

algorithms. Because of some values of machine learning algorithm parameter space can be real 

or unlimited values, it is necessary to specify a parameter grid to apply this method. In this paper 

grid search provides by GridSearchCV based on out-of-bag score from scikit-learn have been 

applied using only the training subset. This method generates candidates from a grid of 

parameter which its values of parameters have been specified with the param_grid parameter. 

Table 4 lists results obtained via GridSearchCV method. Parameters which are not list on table 4 

have been used by default option available on scikit-learn and random_state parameter which 

control the randomize on learning have been selected as 123 in each model except Random 

Forest. Random Forest is a stochastic model and all results showed are the average between 

results obtained from 30 different seeds to counter random effects on results, appendice X shows 

each result achieved per each seed. XGBoost can behave as stochastic model also, however it 

acted as deterministic because of subsample parameter have been selected as 1, based on 

GridSearchCV results obtained. To experiment against imbalanced on class distribution, 

class_weight parameter as balanced has been applied on CART and Random Forest. No other 

techniques have been applied on kNN model, to leave one without any strategy applied to 

compare results of strategies adopted. In XGBoost model, max_delta_step parameter setup might 

help when classes are extremely imbalanced such as our problem, and no other techniques have 

been necessary to obtain good performance with this model. Equation 19 shows how works 

class_weight parameter (King & Zeng, 2001). 
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 𝑤𝑗 =
𝑛

𝑘𝑛𝑗
 (20) 

   

Where wj is the weight to class j, n is the number of observations, nj is the number of 

observations in class j, and k is the total number of classes. 

Table 4. The results of GridSearchCV. 

Models Parameters Grid of values Optimized value 

kNN n_neighbors 3, 9,15,1,25 15 

weights uniform,distance distance 

algorithm auto,kd_tree auto 

leaf_size 15,30,45 30 

p 1,2 2 

n_jobs None, -1 -1 

CART 
 

criterion gini,entropy gini 

splitter best,random best 

max_features auto, sqrt, log2 log2 

max_depth 1,5,10,50,100 50 

max_leaf_nodes 1,5,10,50,100 100 

ccp_alpha 0.1,0.001,0.00 0.00 

n_jobs None, -1 -1 

class_weight balanced balanced 

Random Forest criterion gini, entropy gini 

max_depth None,3,10,50 None 

max_features auto, sqrt, log2 auto 

n_estimator 25,50, 150,300 150 

n_jobs None, -1 -1 

class_weight balanced balanced 

XGBoost n_estimator 25,50,150,300 150 

booster gbtree,gblinear,dart gbtree 

subsample 0.5,0.8,1 1 

colsample_bytree 0.5,0.8,1 1 

objective multi:softmax multi:softmax 

gamma 0.5,1,2,5 1 

n_jobs None, -1 -1 

eta 0.1,0.3,0.5,1 0.3 

max_delta_step 0,1 1 
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 Results 

Table 5 lists the results of performance measures in the application of the experimentation 

described in three different scenarios, Base case, where feature selection has not been applied, 

eCFS which constitutes the extended correlation-based case and the case of Exhaustive search of 

CFS. Accuracy, AUC score, Cohen’s Kappa have been collected to compare all results achieved, 

also, overall precision, overall Recall and overall F1-score have been listed for the same purpose. 

All models selected in each scenario presents similar behaviour in accuracy metric, standing up 

from 98%, and it is explained by high accuracy reached of majority class labelled as white. This 

situation means that accuracy could not be a good performance to compare the results, and it is 

better to focus on AUC score and Cohen´s Kappa which presents different results in each case. 

Table 5. Test results obtained with selected models. 

ML method Feature set Accuracy AUC 
Cohen’s 

Kappa 
Precision Recall F1-score 

Elapsed 

time 

kNN 

Base 0.9872 0.7686 0.3251 0.6162 0.4317 0.4811 00:15.32 

eCFS 0.9876 0.7729 0.3844 0.6300 0.4833 0.5261 00:13.33 

XCFS 0.9880 0.7841 0.4548 0.6447 0.5608 0.5836 00:07.95 

CART 

Base 0.9835 0.7173 0.3766 0.5490 0.5405 0.5445 00:08.68 

eCFS 0.9827 0.7157 0.3626 0.5354 0.5381 0.5367 00:07.53 

XCFS 0.9808 0.7822 0.4096 0.5425 0.6482 0.5864 00:06.26 

Random 

Forest* 

Base 0.9887 0.9493 0.4145 0.7399 0.4937 0.5650 01:17.20 

eCFS 0.9885 0.9430 0.4358 0.7128 0.5194 0.5816 01:08.41 

XCFS 0.9844 0.8868 0.4513 0.5912 0.6366 0.6106 01:01.75 

XGBoost 

Base 0.9901 0.9874 0.4877 0.8391 0.5525 0.6064 08:28.37 

eCFS 0.9900 0.9868 0.4847 0.8337 0.5510 0.6033 08:21.88 

XCFS 0.9897 0.9840 0.4613 0.8282 0.5348 0.5839 07:46.20 
 

Note: * Random Forest results listed are the average results from results of 30 different seed. Desviation has not been included 

because of the minimal variability among seeds. 

CART and kNN have been achieved equivalent level of AUC. However, feature selection has 

been increased the AUC score in higher level on CART model, especially in the XCFS scenario, 

where an exhaustive search has been applied. Random Forest and XGBoost have been presented 

better results than the previous models but feature selection scenarios have not reached better 

results comparing with base case on these models. Anyway, XGBoost which is the method that 

have been achieved the highest result, does not present a big variability between the three 

scenarios of experimentation applied. This situation is different for Random Forest, which 

presents a lower level on AUC measure in XCFS feature selection case. 
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XGboost has the same behaviour in the case of Kappa performance, being again the model that 

achieves the best results, it does not present high variability of results between the three 

scenarios, although XCFS is the one that achieves the worst results. The two scenarios of feature 

selection seem to perform better in CART and kNN techniques, where XCFS improves the result 

obtained, bringing results closer to Random Forest and XGBoost metrics achieved, standing up 

from 0.40 in both cases. Same conduct can be found on Random Forest model, where 0.45 have 

been reached in XCFS scenario.  

Focusing on precision, recall and F1-score overall metrics, every model in each scenarios seems 

to perform same pattern on these metrics, a good level on precision, and lower level on recall a 

therefore on F1-score. CART has been the model with lower performance, follow by kNN. 

XGBoost has been again the best method and reached the highest perform, but Random Forest 

achieves the best results on F1-score and recall in XCFS scenario. 

Figure 4. Precision, Recall and F1-score on base set. 

 

Note: * Random Forest results listed are the average results from results of 30 different seed. Desviation has not been included 

because of the minimal variability among seeds. 
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Figures 4, 5, and 6 includes results reached about precision, recall and F1-score of each 

ransomware label in the three scenarios analysed. As these figures show, the pattern observed in 

the performance of overall metrics is due to the variability between the false positives and false 

negatives belonging to the different classes of ransomare analysed, achieving worse results in the 

cases of montrealCryptoLocker and paduaCryptoWall, and reaching the best results of precision, 

recall and f1-score for the montrealCryptXXX class, and less in Princeton Family. Figure 4 

shows the results from the base case, and it is easy to see how XGBoost results obtained the best 

results of Precision in all classes. However, CART achieved better performance with 

montrealCryptoLocker and paduaCryptoWall of Recall metric and consequently on F1-score. 

Random Forest model also obtained better Recall and F1-score with these classes but in smaller 

measure than CART. 

Figure 5. Precision, Recall and F1-score on eCFS feature subset. 

 

Note: * Random Forest results listed are the average results from results of 30 different seed. Desviation has not been included 

because of the minimal variability among seeds. 
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Figure 6. Precision, Recall and F1-score on XCFS feature subset. 

 

 

 

Note: * Random Forest results listed are the average results from results of 30 different seed. Desviation has not been included 

because of the minimal variability among seeds. 

Figure 5 represents the results obtained in eCFS feature subset, where the same different in 

models metrics can be found with less variability between them. Also, Random Forest reached 

better Recall and F1-score with montrealCryptoLocker and paduaCryptoWall classes than 

CART, and the feature selection based on extended correlation improved the learning of Random 

Forest technique in higher way than the rest of models. The variability of results has been further 

reduced with the XCFS feature selection application as figure 6 shows. In all scenarios, 

montrealCryptXXX is the easiest ransomware label to be detected excluding white label follow 

by both labels from princeton family. To extend this analysis, appendix A collects normalized 

confusion matrices of each scenario studied, where the explanation of the differences obtained in 

the classification of labels can be found. As confusion matrices shows, the false negatives of 

ransomware labels have been concentrated as white. However, no false negatives have been 

founded between ransomware labels, and white label has not been classified as ransomware label 
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in any case. The recall metrics reached are explained by this fact because of the high true 

negative rate obtained. Also, both feature selection methods applied have been improved the 

false negative and true positive rate in each case. 

Feature selection provides a faster and more optimal process in a huge data set such the used on 

this work, using less information represented by less features selected did not generate a 

remarkable variability on results obtained, but needs less time to reach equal results. Elapsed 

time lists on table 5 consists in the duration of training phase and is measure in minutes. XCFS 

improves a lot the results achieved, and only in the XGBoost method, the results are lower than 

base scenario, although with a minimal variability. This situation allows to affirm that in our 

case, XCFS is a valid strategy which enables to achieve similar or better results with less features 

compared to the baseline data set. 
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 Conclusions 

Bitcoin Network constitutes a public ledger without the presence of a central authority and 

involves a pseudo-anonymous around the blockchain transactions which allows to criminals 

extorting money from their victims. Ransomware malware could be one of the most dangerous 

cybercriminal activities on this scenario.  

The technology of blockchain used in bitcoin network makes possible to organise massive data 

such the collected on the data set used in our analysis, that makes possible the implementation of 

KDD methodology to extract information from transactions of cybercrime and illegal activities 

such as ransomware payments. However, implementing machine learning techniques with the 

dimension of the studied data set can lead to high computation times and make difficult the 

knowledge extraction from data. In this context, feature selection enables to simplify 

classification process using less information represented by less features. Also, the recorder of 

information described may constitutes an imbalanced of classes in data set such as used on this 

work, and only few instances have been recorded of a lot of labels included on our data set, 

implying the necessity to focus on most common ransomware labels added, analysing only the 6 

top labels including the free ransomware class categorized as white in a subsampling of the total 

of data. A few methods to solve this problem have been described on this paper such as cost 

sensitive learning and SMOTE. Anyway, we focused on the use of machine learning techniques 

applied without any imbalanced strategy such as kNN and XGBoost, and the use of weights per 

each class in CART and Random Forest. The results confirms that ensemble methods are much 

better to classify the instances testing, and XGBoost is the one which has been achieved the best 

results in all performances, by fixing the parameter max_delta_step. 

The methodology proposed on this paper aims to detect ransomware from three different 

families, Monreal, Padua and Princeton, and we discovered that the performance achieved of 

each family have been different in the transaction’s classification from ransomware payments. 

MonrealCryptoLocker and paduaCryptoWall have been the most difficult to detect in our case, 

and montrealCryptXXX the easiest one. This situation implies the necessity of more information 

and data from the rest of labelled categorized and ransomware developers are not blind, as new 

techniques and methods come out to detect ransomware cybercriminal activities, they improve 
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their development, creating a tug of war that makes the balance fall on their side. It is very 

important to continue making progress in stopping ransomware on cryptocurrency networks to 

achieve that blockchain transactions are not the epicenter of current cybercrime, due to the great 

advantages that offer to development of these activities.  
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Appendices 

Appendix A. Normalized Confusion Matrices of each scenario studied. 

Appendix A.1. Normalized Confusion Matrix from Base feature set. 
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Appendix A.2. Normalized Confusion Matrix from eCFS feature subset. 
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Appendix A.3.Normalized Confusion Matrix from XCFS feature subset. 
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Appendix B. Random Forest results from 30 different seeds. 

Appendix B.1. Results of seed from Random Forest on Base feature subset. 

 

SEED: {'random_state ': 111} 

elapsed time: 0:01:18.242116 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9151    0.8030    0.8554       604 

montrealCryptoLocker     0.4070    0.0846    0.1401      2329 

     paduaCryptoWall     0.5444    0.1385    0.2208      3098 

     princetonCerber     0.7836    0.4271    0.5529      2306 

      princetonLocky     0.8187    0.5290    0.6427      1656 

               white     0.9903    0.9984    0.9943    718821 

 

            accuracy                         0.9888    728814 

           macro avg     0.7432    0.4968    0.5677    728814 

        weighted avg     0.9855    0.9888    0.9860    728814 

 

Cohen's Kappa: 0.4184425661811627 

roc auc score: 0.9497114355128738 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 123} 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9141    0.7930    0.8493       604 

montrealCryptoLocker     0.3959    0.0833    0.1376      2329 

     paduaCryptoWall     0.5357    0.1356    0.2164      3098 

     princetonCerber     0.7772    0.4206    0.5459      2306 

      princetonLocky     0.8111    0.5314    0.6421      1656 

               white     0.9903    0.9984    0.9943    718821 

 

            accuracy                         0.9887    728814 

           macro avg     0.7374    0.4937    0.5643    728814 

        weighted avg     0.9853    0.9887    0.9859    728814 

 

Cohen's Kappa: 0.41425530882317085 

roc auc score: 0.9492726850586313 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 222} 

elapsed time: 0:01:16.715073 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9140    0.7914    0.8483       604 

montrealCryptoLocker     0.3876    0.0807    0.1336      2329 

     paduaCryptoWall     0.5405    0.1378    0.2197      3098 

     princetonCerber     0.7797    0.4237    0.5490      2306 

      princetonLocky     0.8158    0.5242    0.6382      1656 

               white     0.9903    0.9984    0.9943    718821 

 

            accuracy                         0.9887    728814 

           macro avg     0.7380    0.4927    0.5639    728814 

        weighted avg     0.9853    0.9887    0.9859    728814 

 

Cohen's Kappa: 0.41409648768355967 

roc auc score: 0.9491407194416545 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 234} 

elapsed time: 0:01:21.401691 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9157    0.7914    0.8490       604 
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montrealCryptoLocker     0.4008    0.0842    0.1391      2329 

     paduaCryptoWall     0.5409    0.1388    0.2209      3098 

     princetonCerber     0.7835    0.4206    0.5474      2306 

      princetonLocky     0.8196    0.5296    0.6434      1656 

               white     0.9903    0.9984    0.9943    718821 

 

            accuracy                         0.9887    728814 

           macro avg     0.7418    0.4938    0.5657    728814 

        weighted avg     0.9854    0.9887    0.9860    728814 

 

Cohen's Kappa: 0.41590735249527777 

roc auc score: 0.9488817938194224 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 456} 

elapsed time: 0:01:19.922763 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9143    0.7947    0.8503       604 

montrealCryptoLocker     0.4020    0.0854    0.1409      2329 

     paduaCryptoWall     0.5399    0.1375    0.2192      3098 

     princetonCerber     0.7756    0.4211    0.5458      2306 

      princetonLocky     0.8148    0.5127    0.6294      1656 

               white     0.9903    0.9984    0.9943    718821 

 

            accuracy                         0.9887    728814 

           macro avg     0.7395    0.4916    0.5633    728814 

        weighted avg     0.9853    0.9887    0.9859    728814 

 

Cohen's Kappa: 0.4125338675640249 

roc auc score: 0.9495523162753577 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 124} 

elapsed time: 0:01:25.055930 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9235    0.7997    0.8571       604 

montrealCryptoLocker     0.3947    0.0837    0.1382      2329 

     paduaCryptoWall     0.5339    0.1346    0.2150      3098 

     princetonCerber     0.7841    0.4267    0.5527      2306 

      princetonLocky     0.8168    0.5332    0.6452      1656 

               white     0.9903    0.9984    0.9943    718821 

 

            accuracy                         0.9888    728814 

           macro avg     0.7406    0.4961    0.5671    728814 

        weighted avg     0.9854    0.9888    0.9860    728814 

 

Cohen's Kappa: 0.4168676647394576 

roc auc score: 0.9499861806298356 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 221} 

elapsed time: 0:01:19.527963 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9195    0.7947    0.8526       604 

montrealCryptoLocker     0.3900    0.0837    0.1379      2329 

     paduaCryptoWall     0.5317    0.1352    0.2156      3098 

     princetonCerber     0.7822    0.4159    0.5430      2306 

      princetonLocky     0.8204    0.5296    0.6437      1656 

               white     0.9903    0.9984    0.9943    718821 

 

            accuracy                         0.9887    728814 

           macro avg     0.7390    0.4929    0.5645    728814 

        weighted avg     0.9853    0.9887    0.9859    728814 

 

Cohen's Kappa: 0.4131871579077505 

roc auc score: 0.9476592440389755 
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Appendix B.2. Results of seed from Random Forest on eCFS feature subset. 

 

SEED: {'random_state ': 111} 

elapsed time: 0:01:09.171795 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9026    0.7980    0.8471       604 

montrealCryptoLocker     0.3267    0.0919    0.1434      2329 

     paduaCryptoWall     0.5056    0.1598    0.2428      3098 

     princetonCerber     0.7330    0.4536    0.5604      2306 

      princetonLocky     0.8131    0.6069    0.6950      1656 

               white     0.9907    0.9978    0.9942    718821 

 

            accuracy                         0.9886    728814 

           macro avg     0.7120    0.5180    0.5805    728814 

        weighted avg     0.9852    0.9886    0.9861    728814 

 

Cohen's Kappa: 0.43494662702029285 

roc auc score: 0.9434081834391274 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 123} 

elapsed time: 0:01:09.765087 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9072    0.7930    0.8463       604 

montrealCryptoLocker     0.3288    0.0927    0.1447      2329 

     paduaCryptoWall     0.5120    0.1578    0.2413      3098 

     princetonCerber     0.7325    0.4571    0.5629      2306 

      princetonLocky     0.8099    0.6123    0.6974      1656 

               white     0.9907    0.9978    0.9942    718821 

 

            accuracy                         0.9886    728814 

           macro avg     0.7135    0.5185    0.5811    728814 

        weighted avg     0.9853    0.9886    0.9862    728814 

 

Cohen's Kappa: 0.43637196480358875 

roc auc score: 0.9430684424930051 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 222} 

elapsed time: 0:01:08.184019 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9118    0.8046    0.8549       604 

montrealCryptoLocker     0.3278    0.0940    0.1461      2329 

     paduaCryptoWall     0.5025    0.1595    0.2421      3098 

     princetonCerber     0.7307    0.4566    0.5620      2306 

      princetonLocky     0.8089    0.6135    0.6978      1656 

               white     0.9907    0.9978    0.9942    718821 

 

            accuracy                         0.9886    728814 

           macro avg     0.7121    0.5210    0.5829    728814 

        weighted avg     0.9852    0.9886    0.9862    728814 

 

Cohen's Kappa: 0.4369598868998912 

roc auc score: 0.9433822407037198 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 234} 

elapsed time: 0:01:07.748275 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.8987    0.8079    0.8509       604 

montrealCryptoLocker     0.3293    0.0936    0.1458      2329 

     paduaCryptoWall     0.5099    0.1582    0.2414      3098 

     princetonCerber     0.7390    0.4592    0.5665      2306 

      princetonLocky     0.8159    0.6129    0.7000      1656 



 

52 

 

               white     0.9907    0.9978    0.9943    718821 

 

            accuracy                         0.9886    728814 

           macro avg     0.7139    0.5216    0.5831    728814 

        weighted avg     0.9853    0.9886    0.9862    728814 

 

Cohen's Kappa: 0.4381788303179135 

roc auc score: 0.9442334432137223 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 456} 

elapsed time: 0:01:10.085568 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9096    0.7997    0.8511       604 

montrealCryptoLocker     0.3236    0.0906    0.1416      2329 

     paduaCryptoWall     0.5166    0.1611    0.2456      3098 

     princetonCerber     0.7313    0.4545    0.5606      2306 

      princetonLocky     0.8106    0.6075    0.6945      1656 

               white     0.9907    0.9978    0.9942    718821 

 

            accuracy                         0.9886    728814 

           macro avg     0.7137    0.5185    0.5813    728814 

        weighted avg     0.9852    0.9886    0.9862    728814 

 

Cohen's Kappa: 0.4357312729806685 

roc auc score: 0.9427998090759847 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 124} 

elapsed time: 0:01:08.765559 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9103    0.8063    0.8551       604 

montrealCryptoLocker     0.3226    0.0902    0.1409      2329 

     paduaCryptoWall     0.5046    0.1582    0.2408      3098 

     princetonCerber     0.7304    0.4558    0.5613      2306 

      princetonLocky     0.8129    0.6111    0.6977      1656 

               white     0.9907    0.9978    0.9942    718821 

 

            accuracy                         0.9886    728814 

           macro avg     0.7119    0.5199    0.5817    728814 

        weighted avg     0.9852    0.9886    0.9861    728814 

 

Cohen's Kappa: 0.43559501276497437 

roc auc score: 0.9432287075724529 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 221} 

elapsed time: 0:01:08.303372 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.9041    0.7964    0.8468       604 

montrealCryptoLocker     0.3263    0.0927    0.1444      2329 

     paduaCryptoWall     0.5133    0.1614    0.2456      3098 

     princetonCerber     0.7332    0.4540    0.5608      2306 

      princetonLocky     0.8069    0.6105    0.6951      1656 

               white     0.9907    0.9978    0.9942    718821 

 

            accuracy                         0.9886    728814 

           macro avg     0.7124    0.5188    0.5812    728814 

        weighted avg     0.9852    0.9886    0.9862    728814 

 

Cohen's Kappa: 0.43603108643058 

roc auc score: 0.9427206803394461 

 

Appendix B.3.Results of seed from Random Forest on XCFS feature subset. 

 

SEED: {'random_state ': 111} 

elapsed time: 0:01:05.163375 minutes 
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                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.8763    0.8675    0.8719       604 

montrealCryptoLocker     0.1396    0.1537    0.1463      2329 

     paduaCryptoWall     0.3451    0.2999    0.3209      3098 

     princetonCerber     0.5241    0.6696    0.5880      2306 

      princetonLocky     0.6710    0.8436    0.7475      1656 

               white     0.9928    0.9915    0.9921    718821 

 

            accuracy                         0.9844    728814 

           macro avg     0.5915    0.6376    0.6111    728814 

        weighted avg     0.9850    0.9844    0.9846    728814 

 

Cohen's Kappa: 0.45219340860099655 

roc auc score: 0.9008175256103877 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 123} 

elapsed time: 0:01:05.044806 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.8760    0.8659    0.8709       604 

montrealCryptoLocker     0.1400    0.1546    0.1469      2329 

     paduaCryptoWall     0.3452    0.3002    0.3211      3098 

     princetonCerber     0.5233    0.6678    0.5868      2306 

      princetonLocky     0.6746    0.8424    0.7492      1656 

               white     0.9927    0.9915    0.9921    718821 

 

            accuracy                         0.9844    728814 

           macro avg     0.5920    0.6371    0.6112    728814 

        weighted avg     0.9850    0.9844    0.9846    728814 

 

Cohen's Kappa: 0.45193630090700687 

roc auc score: 0.9015352739098553 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 222} 

elapsed time: 0:01:04.153473 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.8746    0.8659    0.8702       604 

montrealCryptoLocker     0.1372    0.1516    0.1441      2329 

     paduaCryptoWall     0.3386    0.2950    0.3153      3098 

     princetonCerber     0.5229    0.6678    0.5866      2306 

      princetonLocky     0.6726    0.8412    0.7475      1656 

               white     0.9927    0.9915    0.9921    718821 

 

            accuracy                         0.9844    728814 

           macro avg     0.5898    0.6355    0.6093    728814 

        weighted avg     0.9849    0.9844    0.9846    728814 

 

Cohen's Kappa: 0.4494683424611059 

roc auc score: 0.9012223682169104 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 234} 

elapsed time: 0:01:03.041988 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.8729    0.8642    0.8686       604 

montrealCryptoLocker     0.1366    0.1516    0.1437      2329 

     paduaCryptoWall     0.3416    0.2966    0.3176      3098 

     princetonCerber     0.5245    0.6683    0.5877      2306 

      princetonLocky     0.6721    0.8406    0.7470      1656 

               white     0.9927    0.9915    0.9921    718821 

 

            accuracy                         0.9844    728814 

           macro avg     0.5901    0.6355    0.6094    728814 

        weighted avg     0.9849    0.9844    0.9846    728814 

 

Cohen's Kappa: 0.4498472683552991 

roc auc score: 0.9013118810516 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 456} 

elapsed time: 0:01:04.510770 minutes 
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                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.8773    0.8642    0.8707       604 

montrealCryptoLocker     0.1386    0.1520    0.1450      2329 

     paduaCryptoWall     0.3461    0.3012    0.3221      3098 

     princetonCerber     0.5230    0.6657    0.5858      2306 

      princetonLocky     0.6726    0.8424    0.7480      1656 

               white     0.9927    0.9915    0.9921    718821 

 

            accuracy                         0.9844    728814 

           macro avg     0.5917    0.6362    0.6106    728814 

        weighted avg     0.9849    0.9844    0.9846    728814 

 

Cohen's Kappa: 0.45153765638374554 

roc auc score: 0.9023455287070979 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 124} 

elapsed time: 0:01:06.649751 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.8792    0.8675    0.8733       604 

montrealCryptoLocker     0.1381    0.1516    0.1445      2329 

     paduaCryptoWall     0.3473    0.2992    0.3215      3098 

     princetonCerber     0.5266    0.6700    0.5897      2306 

      princetonLocky     0.6724    0.8430    0.7481      1656 

               white     0.9927    0.9916    0.9922    718821 

 

            accuracy                         0.9845    728814 

           macro avg     0.5927    0.6372    0.6116    728814 

        weighted avg     0.9850    0.9845    0.9847    728814 

 

Cohen's Kappa: 0.45270411168679625 

roc auc score: 0.9011935345065591 

------------------------------------------------------------------------------------------ 

SEED: {'random_state ': 221} 

elapsed time: 0:01:03.709106 minutes 

                      precision    recall  f1-score   support 

 

    montrealCryptXXX     0.8790    0.8659    0.8724       604 

montrealCryptoLocker     0.1386    0.1529    0.1454      2329 

     paduaCryptoWall     0.3450    0.2989    0.3203      3098 

     princetonCerber     0.5231    0.6674    0.5865      2306 

      princetonLocky     0.6720    0.8412    0.7471      1656 

               white     0.9927    0.9915    0.9921    718821 

 

            accuracy                         0.9844    728814 

           macro avg     0.5917    0.6363    0.6106    728814 

        weighted avg     0.9849    0.9844    0.9846    728814 

 

Cohen's Kappa: 0.4512145320528079 

roc auc score: 0.9005525358577926 

 


