
Knowledge Discovery in the Bitcoin Market: Study on a

High-Volume Data Set.

 by

José Antonio Blanco Mellado

A thesis submitted in conformity with the requirements
for the MSc in Economics, Finance and Computer Science

University of Huelva & International University of Andalusia

December 2021

2

Knowledge Discovery in the Bitcoin Market: Study on a High-

Volume Data Set

 José Antonio Blanco Mellado

Máster en Economía, Finanzas y Computación

Supervisor: Dr. Antonio J. Tallón Ballesteros

Universidad de Huelva y Universidad Internacional de Andalucía

2021

Abstract

Knowledge Discovery in Databases makes possible analysing the cybercriminal activity on

Bitcoin Market. Ransomware attacks are one of the most dangerous related crimes in the coins

market; this type of malware forces victims to pay after encryption of the victim’s file. This

Master’s dissertation aims to analyse this context using machine learning techniques through

bitcoin transactions data set. The baseline data set containing all the attributes has been compared

with two reduced subsets applying feature selection methods in an independent way: Extended

Correlation-based Feature Selection (eCFS) and Correlation-based Feature Selection with

Exhaustive Search (XCFS). CART from the trees’ family, Random Forest and XGBoost, as

ensemble methods, and kNN, which is lazy algorithm, have been selected to achieve our results.

We focus on kappa and accuracy metrics to evaluate on unseen data the trained classification

models, and precision, recall and f1-score to study the detection performance on ransomware

classes studied.

JEL classification: D47, E42, G10, K42.

Key words: KDD, Bitcoin Market, Supervised Machine Learning, Data Mining, Big Data, CFS,

Feature Selection, Classification.

3

Resumen

La metodología Knowledge Discovery in Databases posibilita el análisis del cibercrimen en el

mercado de Bitcoin. Los ataques de ransomware son uno de los delitos más peligrosos en el

mercado de las criptomonedas; este tipo de malware obliga a las víctimas a pagar después de

cifrar el archivo de la víctima. Este TFM tiene como objetivo detectar ransomware utilizando

técnicas de aprendizaje automático utilizando un conjunto de datos de transacciones de bitcoin.

El conjunto de datos base se ha comparado con dos subconjuntos reducidos que aplican métodos

de selección de atributos: correlación extendida (eCFS) y correlación con búsqueda exhaustiva

(XCFS). Los modelos CART, Random Forest, XGBoost, y kNN, han sido seleccionados para

llevar a cabo la experimentación. La precisión de los modelos ha sido comparada con las

métricas AUC y kappa de Cohen. La especificidad, la sensibilidad y f1-score muestran el

rendimiento en la detención de las clases de ransomware estudiadas.

4

Acknowledgments

I would like to thank Antonio Tallón for his suggestions, helpful advice, and guidance in this

project.

I am also grateful to my family for their unconditional support and love.

I cannot begin to express my thanks to Natalia for being my partner in all aspects of my life.

5

Table of Contents

 Introduction .. 9

 State-of-the-art ... 11

 Description of the Data .. 15

 Experimentation ... 19

4.1 Methodology ... 19

4.2 Feature selection ... 20

4.3 Metrics .. 22

4.4 Supervised Machine Learning. ... 25

4.4.1 K-Nearest Neighbors (kNN). .. 26

4.4.2 Decision Tree (CART). ... 26

4.4.3 Random Forest. ... 27

4.4.4 Gradient Boosting (XGBoost). ... 28

4.4.5 Hyperparameters optimization. ... 29

 Results .. 31

 Conclusions .. 36

References ... 38

Appendices .. 46

6

List of Tables

Table 1. Values of variables in data set. ... 15

Table 2. Ransomware labels. .. 17

Table 3. Feature selection procedures used in the experimentation. .. 22

Table 4. The results of GridSearchCV. ... 30

Table 5. Test results obtained with selected models. .. 31

7

List of Figures

Figure 1. Correlation between variables. .. 16

Figure 2. Confusion Matrix on multi-class case.. ... 23

Figure 3. Example of ROC representation. .. 24

Figure 4. Precision, Recall and F1-score on base set. ... 32

Figure 5. Precision, Recall and F1-score on eCFS feature subset. ... 33

Figure 6. Precision, Recall and F1-score on XCFS feature subset. .. 34

8

List of Appendices

Appendix A. Normalized Confusion Matrices of each scenario studied. 46

Appendix B. Random Forest results from 30 different seeds. .. 49

9

 Introduction

Cryptocurrencies are getting a prominent place on global monetary transactions (Liu, Jiang, Liu,

& Tse, 2021). Cryptocurrencies are digital currencies whose transactions are maintained and

verified through a decentralized system with the use of cryptography and not by a centralized

system. The bitcoin market has been the top cryptocurrency by market capitalization since the

blockchain transaction started. The bitcoin network is a public and distributed ledger where all

transactions append between two different addresses and is recorded on bitcoin blockchain built

and secured by bitcoin miners, who solve complex cryptographic problems through their own

computing power and verify blocks and transactions (Goldsmith, Grauer, & Shmalo, 2020). This

process establishes a huge record of data which is quickly expanding and allows the chance to

use it to analyse the human behaviour in the bitcoin market, this analysis is often called

blockchain analysis (Liu et al., 2021) and is a powerful tool against cybercriminal activity. The

European Commission defined cybercrime as: “criminal acts committed using electronic

communication networks and information systems or against such networks and systems”

(Koops, 2010). Most popular cybercrime involves phishing scams, scamming activity, and

hacking of wallets or transactions. In this context, Ransomware is a type of malware which

prevents users from accessing their personal online accounts or personal files to require a ransom

payment to regain their access. Ransomware can lock access to resources and encrypt their

content and is able to infect mobile devices and IoT devices. In most cases, cryptocurrency

payments have been selected by ransomware owners as the established payment. Recent

computer hacks such as CryptoLocker, CryptoWall, DMA Locker and WannaCry use bitcoin

network to ransom (Paquet-Clouston, Haslhofer, & Dupont, 2019a). Transactions stored in the

public ledger that Blockchain constitutes do not require the presence of a central authority. The

transactions based on blockchain technology have a pseudo-anonymous based on this situation,

and criminals can take advantage of it to extort money from their victims without leaving any

trace. But the collection of huge data sets from cryptocurrency transactions can become the first

step to find the trace of ransomware activity.

Knowledge Discovery in Databases (KDD) is a process which consists of analysing useful

information from relevant and important sources with any pre-processing or transformation of

10

the database to extract knowledge according to the specification of measures and thresholds

(Montalvo-Garcia, Quintero, & Manrique-Losada, 2020). This process starts with the creation of

a target data set, or making data samples or subset of variables, where discovery will be done.

After that, target data could need being cleaned or pre-processed to obtain consistent data.

Transformation methods may be used to reduce the dimensionality of data. There is an important

phase during KDD process which consists of the searching for patterns of interest, this stage is

called Data Mining (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Finally, the patterns are

evaluated and interpretated in order to reach conclusions of the extraction of knowledge.

Machine learning (ML) (Sarker, 2021) is becoming the optimal technology to analyse patterns on

the data from the current age of the Fourth Industrial Revolution (Schwab, 2017) (4IR or

Industry 4.0). The knowledge of artificial intelligence has achieved the development of data

analysis techniques that automates the making of analytics models to reach better results.

Machine learning techniques can be classified into two different categories, supervised and

unsupervised learning models. On the one hand, supervised models (Sathya & Abraham, 2013)

are based on evaluating a training dataset from data with an assigned correct classification. On

the other hand, unsupervised models (Sathya & Abraham, 2013) are those where the learning is

used to find hidden patterns in non-classified input data. The unsupervised context means that

the algorithm may organize information and learn to achieve the potential solution.

This Master’s dissertation aims to develop a KDD process through the use of a high volume

dataset from bitcoin transactions (Akcora, Cuneyt G., Li, Gel, & Kantarcioglu, 2020) applying

Data Mining techniques and making data samples, pre-processing data and reducing the

dimensionality of data and searching patterns of interest in dataset in order to evaluating results

with different metrics through machine learning methods. Specifically, the objective is

ransomware (Brewer, 2016) detection through supervised learning classifier algorithms applying

feature selection techniques and comparing with the base scenario where no data selection takes

place.

11

 State-of-the-art

The first study based on the cryptocurrency transaction history was conducted by Reid and

Harrigan (F. Reid & M. Harrigan, 2011) in 2011, where the emerging structure from the Bitcoin

network was revealed and they demonstrated the forensic capabilities of bitcoin transaction data.

Since them, many studies through data mining techniques have been successfully applied with

the use of cryptocurrency transactions data. Although it is easier to find more literature in the

field of supervised learning, the related work has been applied through unsupervised and

supervised learning models. While supervised learning has been used in price prediction,

detention of fraud activities or cybercrime and other purposes such as de-anonymizing

cryptocurrencies transactions, unsupervised learning studies have been concentrated in the

detection of anomalies through the cryptocurrency networks.

Phan and Lee (Pham & Lee, 2016) used three unsupervised learning methods, k-means

clustering, Unsupervised Support Vector Machines (modified SVM) and Mahalanobis distance

based method through two graph of Bitcoin Network, one graph has used as nodes and in the

other the nodes are transactions. Their work focused on the detection of anomalies in Bitcoin

transaction network, involving a more general searching than the fraud activities detection. Chen

et al. (Chen, Ting et al., 2020) wrote the first systematic investigation on Ethereum transactions

using graph analysis, a new way to collect the transaction data is proposed to make money flow

graph, smart contract creation graph and smart contract invocation graph to analyse more

activities on Ethereum Network and analysing attack forensics and anomaly detection via cross-

graph analysis.

In the line of price prediction, Jang and Lee (Jang & Lee, 2017) presented empirical studies able

to show the effect of Bayesian networks in predicting Bitcoin price time series, and interpreting

the high volatility of Bitcoin price on the date of their paper was written, by relevant features

from Blockchain information of Bitcoin network. The results reached are compared with other

linear and non-linear benchmark models. Jay et al. (Jay et al., 2020) trained LSTM (Long Short-

Term Memory) models and MLP (Multi-Layer Perceptron) models for Bitcoin, Ethereum and

Litecoin price prediction. The proposed approach is based on random walk theory from financial

market used for modelling stock prices. The results achieved are superior to results from the

12

deterministic models applied in previous papers. Saad et al. (Saad, Choi, Nyang, Kim, &

Mohaisen, 2019) reached an accuracy over to 99% for Bitcoin and Ethereum prediction with

their work. Linear regression, Random Forest (RF), and Gradient Boosting (GB) have been used

as regression models to predict the prizes. They also applied LSTM networks, based on recurrent

neural networks keeping a continuous set of data for a long time, and reaching high accuracy

than previous works.

The literature where classification learning is applied can be grouped in two categories, binary

classification, and multi-class classification. Ranshous et al. (Ranshous et al., 2017)

distinguished from previous works representing the multi-way relation between transactions and

addresses in the Bitcoin network as directed hypergraph model. They searched a potential

laundering pattern through binary classification models, testing Random Forest, AdaBoost,

Linear SVM, Perceptron and Logistic Regression with features from different characteristics of

exchange and non-exchange addresses, and reaching the best perform with Random Forest and

AdaBoost attaining high accuracy labelling addresses as being owned by exchanges or not.

Bartolleti, Pes and Serusi (Bartoletti, Pes, & Serusi, 2018) study Ponzi schemes on the Bitcoin

blockchain via imbalanced data set from Bitcoin transactions. They selected 5 different features

from 32 features based on Bitcoin addressed characteristic to applied data mining and feature

selection techniques with binary classification through RIPPER, Bayes Network and Random

Forest classifiers. They consider Random Forest with cost sensitive learning the most effective

model for detecting Ponzi schemes on Bitcoin Blockchain, which achieved a low number of false

positives. Weber et al. (Weber et al., 2019) contributed to literature with a binary classification

task predicting illicit transaction using a time series graph of over 200K Bitcoin transactions,

234K directed payment flows and 166 features. They tested a variation of Logistic Regression,

Random Forest, MLP and Graph Convolutional Networks (GCN), and they found special interest

on GCN as a new method for capturing relational information. Their results achieved showed the

superiority of Random Forest. Chen et al. (Chen, Weili, Zheng, Ngai, Zheng, & Zhou, 2019) also

study Ponzi schemes which are hired as smart contracts, they called these Ponzi schemes as

smart Ponzi schemes and obtained examples by manually checking more than 3000 open source

smart contracts on the Ethereum network. Two types of features have been extracted to perform

a binary classification model to detect smart Ponzi schemes. Their proposed model performs

13

better results than many traditional classification models, they achieved estimating more than

500 smart Ponzi schemes through Ethereum network.

Most of multi-class learnings applied in the previous researches have been focused on solving

the issues derived from Blockchain pseudo-anonymity. Jourdan et al. (Jourdan, Blandin, Wynter,

& Deshpande, 2018) defined novel features for entity classification from a graph neighbourhood

perspective based on Bitcoin exchange transactions modelling the Bitcoin Blockchain such as

directed weighted bipartite graph. They analysed the anonymity properties of Bitcoin Networks

as a classification problem by a set of categories of Bitcoin users represented by 5 entity

categories, exchange, service, gambling, mining pool and DarkNet Marketplace. Decision Tree

(LightGBM) and Logistic Regression performances have been analysed on their work, adding

features to the generic model based on their ease of access. They achieved an accuracy of 41% in

the identification of entity type, the model choice has not been significance in the classification

performance, but the use of more sophisticated features provides a drastic improvement. Toyoda

et al. (Toyoda, Ohtsuki, & Mathiopoulos, 2018) proposes the first multi-class identification of

Bitcoin addresses to identify among seven classes via supervised learning, exchange, faucet,

gambling, investment scam, marketplace, mining pool and mixer. Extreme Gradient Boosting

(XGBoost), Random Forest, SVM and neural network have been trained via 26000 Bitcoin

addresses that have been used from January 2009 to February 2017. The best performance

achieved 72% of accuracy in the identification. Zolal et al. (Zola, Eguimendia, Bruse, & Urrutia,

2019) present a method to attack Bitcoin anonymity by leveraging a cascading machine learning

approach which can work with only few features directly extracted from Bitcoin blockchain data.

The data set is composed of 311 different samples, and similar to other works, which is divided

into six classes. GB, Adaboost and Random Forest are the models selected on their work to

predict each class and improve the results obtained in the previous works. Sun Yin et al. (Sun

Yin, Langenheldt, Harlev, Mukkamala, & Vatrapu, 2019) present an approach for de-

anonymizing the Bitcoin Blockchain transactions through multi-class supervised learning with

22 different imbalanced uncategorized clusters, 14 of them have been labelled such as

ransomware or darknet-market. They utilized a sample of 957 entities with around 385 million

transactions. They applied KNN, Decision Trees, Adaboost, GB, Random Forest, Extra trees,

and Bagging classifiers. GB with default parameters reached a F1-score of 79.64% which

provides a list of suspects who can belong to cybercriminal activities and may be used for further

14

investigation. Linoy et al. (Linoy, Stakhanova, & Ray, 2021) present an approach which finding

affiliation between Ethereum addresses to undermine pseudo-anonymity of Ethereum

transactions by grouping addresses were used to deploy smart contracts from the same authors by

the use of stylometry techniques. The approach is validated on real-word scammers’ data and

Ponzi scheme-related contracts using supervised learning techniques.

There are more than 500 known ransomware families, almost all of them demand payments in

Bitcoin, and ransomware detection has become a specific field from cybercriminal activities

studied in the related works where our research can fit. In this context, Cabaj, Gregorczyk, and

Mazurczyk (Cabaj, Gregorczyk, & Mazurczyk, 2018) contributes with a Software-Defined

Networking (SDN) based on the observation of network between communication of two families

of ransomware, CryptoWall and Locky. The paper defends that HTTP messages’ sequences and

their respective content sizes is enough to detect both families. The experimentation confirms

that SDN analysis is efficient and feasible in the ransomware detection, which can reach a

detection rate of 97-98% with 1-2% or 4-5% false positives. WannaCry ransomware uses similar

encryption techniques and attack methodologies as other ransomware families. Zimba,

Simukonda, and Chishimba (Zimba, Simukonda, & Chishimba, 2017) discovered these

characteristics analysing WannaCry ransomware samples based on malware-free infection

vectors. The ransomware code is dissected by the perform of reverse-enginnering for further

analysis. When a new paper of anti-malware software that improves detection accuracy is

published, malware developers usually upgrade their attack methods to reduce the detection

rates. Egunjobi et al. (Egunjobi, Parkinson, & Crampton, 2019) present a possibility of

increasing the detection rates and classification by the use of static and dynamic features of

ransomware through the application of supervised learning models such as instance-based,

Random Forest, Naïve Bayes and SVM to classify Locker Ransomware and Crypto Locker

Ransomware, and using a data set from a ransomware repository and goodware from Portable

Apps. Paquet-Clouston et al. (Paquet-Clouston, Haslhofer, & Dupont, 2019b) propose a data-

driven method based on known clustering heuristics for identifying ransomware information

from Bitcoin transactions and providing a better picture of global impact of ransomware

activities. The method has been applied on a sample of 35 different ransomware families finding

new addresses related to each family. The rising of ransom payments over time and the direct

effect of each ransomware family have been analysed in this work. Almashhadani et al.

15

(Almashhadani, Kaiiali, Sezer, & O’Kane, 2019) present a multi-classifier intrusion detection

system to detect ransomware network activities in two independent binary classifiers, packet-

based classifier, and flow-based classifier. Random Forest, Random Tree, LibSVM and Bayes

Net were selected to build each classifier, and the algorithm which provides better accuracy is

selected by each classifier autonomously. Locky family is selected as a case studied to analysis

the behaviour of crypto ransomware activities. There is a complex problem in ransomware

detection related to these addresses that belong to same criminal actors which does not present

common patterns associated. Dalal, Wang and Sabharwal (Dalal, Wang, & Sabharwal, 2021)

introduce new algorithms for local clustering and supervised graph machine learning which

achieve a 85% accuracy to differentiate between random, ransomware and gambling actor in

local subgraphs of the known criminal actors.

 Description of the Data

The studied data set (Akcora, Cuneyt G. et al., 2020) contains information about daily

transactions of bitcoin network through 2916697 instances and 10 variables. Table 1 collects the

total of missing and different values for each variable. Missing values have not been found in the

data set. In this way, it is not necessary to do any additional preprocessing. Two variables of

measure of time have been collected in the data set, year, and day. The period of analysis data

starts in 2011 and finishes in 2018, variable day has 365 different values. The data set contains a

nominal attribute called Address with a lot of different values (a ninety per cent of the number of

instances in the sample) which has not enabled to achieve any classification model after more

than 120 hours in our preliminary experiments. This feature represents the address of

transactions, and it has been removed to proceed with the analysis. The rest of variables are

numeric variables and have been listed with their statistics characteristic in Table 1.

Table 1. Values of variables in data set.

Variable Mean Std. Dev. Min Max Different values Missing Values

address - - - - 2631095 0

year - - - - 8 0

day - - - - 365 0

length 45.009 58.982 0 144 73 0

weight 0.546 3.674 0 1943.749 785669 0

count 721.645 1689.676 1 14497 11572 0

looped 238.507 966.322 0 14496 10168 0

16

Length quantifies mixing rounds on Bitcoin which means where transactions are received and

distributed with similar amounts of coins in many rounds with new addresses for hiding the

origin of coin. Weight is designed to quantify the merge behaviour, where coins in multiple

addresses have been passed through merging transactions and collected in a final address. In the

same way, Count feature represents information on the number of transactions. The count feature

contains information of the number of transactions, and weight feature contains information of

the quantity of transactions. Looped aims at counting how many transactions move coins on the

network by using different paths, split their coins, or merge them in a single address. Finally,

Neighbor is an integer variable, and it is the number of transactions which have common

addresses as one of its output addresses and Income represents the total amount of coin output

and it has been measured in Satoshi (Nakamoto, 2008) amount (1 bitcoin = 100 million satoshis).

Figure 1. Correlation between variables.

neighbors 2.207 17.919 1 12920 814 0

income 4464889007.186 162685960669.345 30000000 49964398238996 1866365 0

label - - - - 29 0

17

Figure 1 represents the relationship between the variables in the data set through the correlation

relations. Each column and row represent a variable. The values inside the matrix are the Pearson

correlation coefficient (Wang, 2013) between variables.

 𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅𝑛

𝑖=1)

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 (1)

Where n is the size of the sample; 𝑥𝑖 , 𝑦𝑖 are the individual sample points and 𝑥̅, 𝑦̅ are the samples

means.

The nominal attributes have been converted in categorical variables to process with this

representation. The highest values of correlation have been found between length and count,

weight and neighbours, and count and looped.

Table 2. Ransomware labels.

ID Label Count

29 white 2875284

5 paduaCryptoWall 12390

3 montrealCryptoLocker 9315

1 princetonCerber 9223

2 princetonLocky 6625

4 montrealCryptXXX 2419

11 montrealNoobCrypt 483

7 montrealDMALockerv3 354

12 montrealDMALocker 251

9 montrealSamSam 62

8 montrealCryptoTorLocker2015 55

25 montrealGlobeImposter 55

19 montrealGlobev3 34

13 montrealGlobe 32

6 montrealWannaCry 28

23 montrealRazy 13

28 montrealAPT 11

15 paduaKeRanger 10

10 montrealFlyper 9

17 montrealXTPLocker 8

16 montrealVenusLocker 7

21 montrealXLockerv5.0 7

24 montrealCryptConsole 7

14 montrealEDA2 6

20 montrealJigSaw 4

18 paduaJigsaw 2

22 montrealXLocker 1

26 montrealSam 1

27 montrealComradeCircle 1

18

Ransomware labels, which are listed in Table 2, have been obtained using Ransomware

addresses taking three different studies: Montreal, Princeton, and Padua (Akcora, Cuneyt

Gurcan, Li, Gel, & Kantarcioglu, 2019) through clustering process which analysed Ransomware

behaviour similarity. The white label represents transactions that are free of ransom and stages

the 98.58% of analysed transactions. It is relevant to stress that we are tackling with a multi-class

classification problem with more than 25 classes and with an unbalanced data set. There are

many labels with minuscule counts, and this situation represents an issue in a multi-class

classification problem, there is not enough information which make possible a good performance

in the classification of this labels. The data set has been subsampled to test our experiments using

the top 6 labels listed in Table 2 to improve the detection of most common ransomware labelled,

hence, the number of instances to conduct the experiments is 2915256.

19

 Experimentation

4.1 Methodology

The knowledge discovery process in the studied data set has been tedious because of the high

volume of data and complexity and nature of data. The procedure of building classifier models

for imbalanced data set such as our problem is a demanding task. Classic classifier models often

cannot achieve good performance with high imbalance ratio in data set. Even if a high level of

accuracy has been reached, this level can only represent the results achieved of classification on

majority class, but it can be close to zero of the rest whole data set. This situation becomes more

difficult when we are finding solution to an imbalanced multi-class problem. On one hand,

resampling techniques can be applied in order to solve this issue and there are a huge record of

different techniques, such SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002), a method

which creates artificial samples belonging to the minority class, where new samples are called

synthetic samples. Another method, ADASYN (He, Bai, Garcia, & Li, 2008) creates new

instances depending on the relative weight of minority instances defined by proportion of

majority class samples in the neighbourhood to determine the number of synthetic examples that

will be created. Also, under-sampling approaches (Yen & Lee, 2006) can be applied to improve

the classification accuracy for minority class reducing the number of majority class instances on

training data. On the other hand, cost sensitive learning (Elkan, 2001) assigns a high cost to non-

true positive on classification of the minority class and reduces the overall cost through the

development of a Cost Matrix (Ling & Sheng, 2008). Oversampling such as SMOTE or

ADASYN makes more copies of existing instances which can have same effect than overfitting

on learning process. Also, the new copies make the problem bigger and increasing the learning

time. Undersampling approaches do not use potentially useful data and contributing to the loss of

information on learning process. These techniques could not consider neighbour examples from

other classes, and this can introduce additional noise to training data. The problem with cost

sensitive learning is that there are not many implementations of all learning algorithms and could

be hard finding a good Cost Matrix. Considering these disadvantages and due to the size of data

set used oversampling and undersampling techniques have not been applied in this work. Instead

of these techniques, kNN have been tested without any strategy mentioned, because kNN can be

independent of imbalance data issues; Decision Tree, Random Forest have been tested using

20

different weights in all the classes misclassifying the white class to obtain better results on the

rest of classes; and XGBoost have been tested by the optimization of max_delta_step parameter.

The experimentation has been conducted by the equipment with the following settings: Windows

10 as operative system (OS), CPU AMD Ryzen 4800 h 2.9 Ghz, 16 Gb of RAM memory and

GPU RTX Nvidia 2060. Concerning the specific software for data two different tools have been

used: the Weka (Waikato Environment for Knowledge Analysis) framework (Hall, Mark et al.,

2009) and Python language (VanderPlas, 2016) with the libraries Pandas and Numpy

(McKinney, 2011), Scikit Learn (Pedregosa et al., 2011), and XGBoost implementation through

Jupyter Notebook (Perkel, 2018) from Anaconda distribution platform. The data set has been

divided into two subsets with a stratified hold-out cross validation (Ojala & Garriga, 2010) to

ensure that samples on training and test sets have been organized in same proportion as in

original data set. One quarter of instances (728814 instances) have been collected in testing sets,

and the rest have been selected as training set (2186442 instances). All classifiers have been

applied using the same training and testing sets. The files are available in github1 in order to

make possible the reproduction of experiments by any interested person.

4.2 Feature selection

Feature Selection (FS) (Cai, Luo, Wang, & Yang, 2018) is a process to reduce the dimension of

data set and makes more effectively and faster the learning of ML models, it consists in

identifying the irrelevant and redundant features and remove as much of these feature as

possible. Feature subset selection is the most common strategy within the FS area. In general, FS

algorithms have two parts: an algorithm is used to generate proposed subsets of features selection

and to find an optimal subset, and other part that evaluates the results of proposed feature subset

and returning measure of goodness to the selection algorithm. FS have normally been grouped

into two groups, filter, and wrapper. The difference depends on how the FS method works

against inductive algorithm that will apply the selected subset. This paper focuses on the use of

filter methods, but many of them have been applied. ReliefF is a method that selects the relevant

features using a randomly picks of a sample of instances and assigns a weight for each feature

1
 https://github.com/josanb12/KDD-Bitcoin

21

based on the Euclidean distance measure. The features are chosen after exhausting all instances

in the sample using the order assigns of the weight feature. Neural-network feature selector

(NNFS), Boosted Decision Stump FS (BDSFS), LVF, LVS, Sequential forward floating

selection (SFFS) and sequential backward floating selection (SBFS) are other methods.

However, methods based on a correlation measure (Hall, 1999) have been applied in this work.

The feature subset is selected following a hypothesis that suggests that “a good feature subset is

one that collects features which are highly correlated with the independent variable but are

uncorrelated with the rest of variables”. Equation 2 (Kavipriya & Karthikeyan, 2017) is used to

filter out the extremely correlated and unrelated features.

 𝐹𝑠 =
𝑁𝑟𝑐𝑖̅̅ ̅

𝑁 + 𝑁(𝑁 − 1)𝑟𝑖𝑖
 (2)

Where N is the number of features in data set, 𝑟𝑐𝑖 is the average feature correlation with the class

and 𝑟𝑖𝑖 is the mean feature inter-correlation. The advantages (Kavipriya & Karthikeyan, 2017) of

this method are that it needs less computational complexity compared to other method, and it

scale well to high dimensional data set. However, this method depends on the model and can fail

to fit well the data, but it does not ignore the communication with classifier such as other

methods. This works is an extension of the results obtained on (Blanco & Tallón-Ballesteros,

2021) using similar FS techniques.

Extended Correlation-based Feature Selection (eCFS) (Tallón-Ballesteros, Cavique, & Fong,

2019) and Correlation-based Feature Selection (XCFS) with Exhaustive Search (Mnich &

Rudnicki, 2020) have been considered as feature subset selection methods. They have been

applied using the Weka (Waikato Environment for Knowledge Analysis) framework (Hall, Mark

et al., 2009).

Table 3 summarizes the settings used in both methods and the feature selection obtained. The

experiments have been conducted through three different cases, no feature selection applied

called Base, eCFS where eFSS method applied, and XCFS where XFSS method applied.

22

Table 3. Feature selection procedures used in the experimentation.

4.3 Metrics

The overall classification accuracy may not be an appropriate metric in imbalanced data

problems. A common classifier can predict every case as the majority class and still achieve very

high level on accuracy metric. It is necessary to calculate alternative metrics such Cohen’s

Kappa (Cohen, 1960) and ROC AUC score (Fawcett, 2006). In multi-class classification with

learning extremely imbalanced data, the study of overall metrics is not enough, the difference

among metric of each class is much relevant than binary classifications. For this purpose,

precision, recall, and f1 measures of each class have been collected from each model applied.

These metrics depend on confusion matrix results. Confusion matrix (Provost & Kohavi, 1998)

contains information between actual and predicted classifications obtained by a classification

algorithm. The size of a confusion matrix is (N, N) where N is the number of different classes in

the problem. Figure 2 represents a confusion Matrix in multi-class case considering the class k (0

≤ k ≤ n), where TN is the number of true negatives, TP is the number of true positives, and FN

and FP are the number of false negatives and false positives respectively.

Feature
selection

method

Type Parameter/Property Value Features
selected

eCFS

(Tallón-
Ballesteros et

al., 2019)

eFSS Attribute evaluation measure Correlation year, day, neighbor,

income, weight,
count, looped

Search method Best First

Consecutive expanded nodes without
improving

5

Search direction Forward

XCFS

(Mnich &
Rudnicki, 2020)

XFSS Attribute evaluation measure Correlation year, day, neighbor,

income Search method Exhaustive search

Consecutive expanded nodes without
improving

5

Search direction Forward

23

Figure 2. Confusion Matrix on multi-class case. Adapted from: (Flach, 2012).

Precision is the capability of the classifier to not classify a negative sample as positive.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
 (3)

Recall is the ability of the classifier to classify properly all the positive samples.

 𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
 (4)

F-1 score is the harmonic mean of precision and recall and is more sensitive to data distribution

than other metrics, this made it more suitable measure for classification problems on imbalanced

data set.

 𝐹1𝑘 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑘
 (5)

24

Cohen’s Kappa (Cohen, 1960) is a statistic that scores the level of agreement in a classification

problem.

 𝑘 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 (6)

Where 𝑝0 is the empirical proportional agreement between predicted values and actual values.

This proportion can be calculated with the sum of the diagonal values of any confusion matrix

divided by the sum of the rest of values of the confusion matrix. In addition, 𝑝𝑒 is the probability

that true values and false values agree randomly. This metric has been applied using the default

options implemented in scikit learn library on python.

Receiver operating characteristic (ROC) (Fawcett, 2006) curve is a two-dimensional

representation between true positive rate and false positive rate and may be used to evaluate a

classifier performance, figure 3 represents an example of a ROC figure. To compare classifiers,

it is possible to reduce ROC performance to a single value which can represent the performance

obtained. AUC (Fawcett, 2006) score is the calculation of area under the ROC curve and its

value is always between 0 and 1. However, a classifier should not have an AUC less than 0.5.

AUC of a classifier represents the probability that the classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative instance (Fawcett, 2006). Equation 7

and 8 clarified the concept of True Positive Rate and False Positive Rate represented on Figure 3.

Figure 3. Example of ROC representation. Source: https://scikit-learn.org

25

 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7)

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8)

The AUC score has been obtained by Scikit Learn library on Python, which is calculated through

trapezoidal Rule Numerical Integration to find the area under ROC curve (Yeh, 2002). The area

of trapezoid is:

 (𝑥𝑖+1 – 𝑥𝑖) (𝑦𝑖 + 𝑦𝑖+1) / 2 (9)

In the AUC case the formulation based in the last equation is:

 (𝐹𝑃𝑅𝑖+1 – 𝐹𝑃𝑅𝑖) (𝑇𝑃𝑅𝑖 + 𝑇𝑃𝑅𝑖+1) / 2 (10)

Where FPR represents false positive rate calculated by:

 𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅 (11)

Two strategies are currently supported to used AUC score in multi-class classification, one-vs-

one algorithm calculated by using the average of the pairwise ROC AUC scores between each

label, and the one-vs-rest algorithm which computes the average of ROC AUC scores for each

label against the rest. In this paper, a one-vs-rest strategies have been applied. The rest of

parameters have been maintenance in the default option using scikit learn on python.

4.4 Supervised Machine Learning.

The problem of ransomware detection using the data set selected have been conducted via 4 non-

parametric models. CART, kNN, Random Forest and XGBoost have been the machine learning

models selected based on previous related works studied in the same field.

26

4.4.1 K-Nearest Neighbors (kNN).

K-nearest Neighbour (kNN) (Wu et al., 2008) classification is an instance-based learning or non-

generalizing learning method used to find a group of k objects during the learning from the

training set which are closest to the test object and assign a label on the predominance class in

this neighbourhood. A set of labels of objects, a set of stored records, a distance or similarity

metric to calculate distance between object and the value of k, which represents the number of

nearest neighbours, are the key elements of this approach. The k-nearest neighbours are

identified, and the class label assigns of these neighbours are used to select the class label of the

test object. The algorithm computes the distance or similarity between test objects and all the

training objects to determine the nearest-neighbour list, them the test object is classified based on

the majority class of its nearest neighbours:

 Majority Voting = argmax𝑣 ∑ 𝐼(𝑣 = 𝑦𝑖)

(𝑥𝑖,𝑦𝑖)∈𝐷𝑧

 (12)

Where v is a class label, 𝑦𝑖 is the class label for the ith nearest neighbours, and I is a function that

returns the value 1 if its argument is true and 0 in other case. D is the set of k training object and

z is the test object.𝐷𝑧 is the nearest-neighbours list.

KNN is a lazy learning classifier (Flach, 2012) which requires computing the distance of the

unlabelled object to all the objects in the labelled and can need a lot of computational time for

large training sets but is possible to reach an efficient computational time using different

techniques developed for that propose. KneighborsClassifier from scikit-learn has been applied

which implements learning based on the number of neighbours within a floating-point value

specified of each training point.

4.4.2 Decision Tree (CART).

The name of Decision Tree models is derived from a hierarchical model visually formed like a

tree. This algorithm splits observations into multiple subsets, based on a decision node with a

criteria determined from the features, and applying the most significant feature to perform the

better split among the observations (Baesens, 2014). To perform the better split, the algorithm

searches the most significant feature to be applied. The best split is choice computing an

27

impurity function or loss function based on three possible criteria, Misclassification, Entropy or

Gini Index (Raileanu & Stoffel, 2004). Entropy shows the grade of homogeneity of a sample

distribution, it means that in the scenario where classes are equally divided in two subsets, the

entropy will be 1. When distribution becoming homogeneous, the entropy will be zero. G is the

information gain and E the entropy in equation 13.

 𝐺(𝑦, 𝑥) = 𝐸(𝑦) − 𝐸(𝑦, 𝑥) (13)

Where E(y) represents the entropy in the class distribution before the split and E(y,x) the entropy

after the subset has been split by the decision node. Target variable is y and x is the feature to be

split on. Equation 14 lists the individual Entropy:

 𝐸 = ∑ −𝑓𝑖𝑙𝑜𝑔(𝑓𝑖)

𝐶

𝐼=1

 (14)

Where 𝑓𝑖 is the frequency of class i at a node and C is the number of unique class in the sample.

To estimate the information gain, the total Entropy for the split is calculated. Equation 15 shows

Gini Index (Raileanu & Stoffel, 2004) function which is another way to compute the impurity

function.

 𝐺 = ∑ 𝑓𝑖(1 − 𝑓𝑖)

𝐶

𝐼=1

 (15)

Where G is the Gini Index and 𝑓𝑖 is the frequency associated to class i, derived from the class

distribution in the subset. The algorithm seeks for the feature split with the leads which perform

the best split of classes by the lowest Gini Index. Decision tree algorithms have different

versions such as ID3, C4.5, C.50 and CART. Classification and Regression Trees (CART) (Loh,

2008) have been applied using an optimized version available on scikit-learn library.

4.4.3 Random Forest.

Random Forest (Breiman, 2001) consists in a combination (ensemble) of individual decision

trees training with a different random sample from data, generated by bootstrapping. Each tree is

trained via different data, and observations are distributed by nodes which generate the tree

28

structure to reach a final node. The prediction of a new observation is obtained adding

predictions from individual decision trees which are pooled to make the final prediction. Random

Forest is referred as Ensemble technique because it uses a collection of results to achieve a final

decision. Ensemble methods combinate multiple models to achieve better prediction than the

individual original models. Two types of ensembles are the most popular: Bagging and Boosting.

Random Forest constitutes a bagging technique (bootstrap aggregation) which aims to reduce the

variance and improving the accuracy of predictions. Bagging on Random Forest can be

explained by three steps. First, B training sets are generated via bootstrapping from original data

set. Them, each B is trained by a tree without pruning. Finally, per each new observation,

prediction of each B tree is obtained. The final prediction is the average of B prediction. Random

Forest classifier has been tested via RandomForestClassifier from scikit learn library.

4.4.4 Gradient Boosting (XGBoost).

Gradient Boosting (Friedman, 2002) is a powerful algorithm in machine learning. It can be

applied in regression and classification problems and is a generalization of AdaBoost algorithm.

Gradient Boosting is an ensemble method which consists in learning models sequentially, each

model fixes residual errors from previous models. First weak learner 𝑓1 predicts output variable

y, and residual error 𝑦 − 𝑓1(𝑥) is calculated. A new model 𝑓2 aims at predicting residual error

from 𝑓1 , and consecutively, this process is repeated M times, and each new model minimizes

residual error from the previous model. This process is sensitive to overfitting, learning rate (𝜆)

parameter can be applied to solve this problem. However, more models are needed to constitute

the ensemble, but better results can be reached. Next formulation shows the process explained.

 𝑓1(𝑥) ≈ 𝑦 (16)

 𝑓2(𝑥) ≈ 𝑦 − 𝜆𝑓1(𝑥) (17)

 𝑓3(𝑥) ≈ 𝑦 − 𝜆𝑓1(𝑥) − 𝜆𝑓2(𝑥) (18)

 𝑦 ≈ 𝜆𝑓1(𝑥) + 𝜆𝑓2(𝑥) + 𝜆𝑓3(𝑥) + ⋯ + 𝜆𝑓𝑚(𝑥) (19)

XGBoost (Chen, Tianqi & Guestrin, 2016) is an implementation of machine learning algorithms

under the Gradient Boosting framework. XGBoost uses a parallel tree boosting that makes

29

possible solving many data science problems with less time and better accuracy, because of its

scalability on all scenarios it runs more than ten times faster than other algorithms (Chen, Tianqi

& Guestrin, 2016). In this paper XGBoost has been applied via XGBoost specific library

(Brownlee, 2016) implemented on python based on scikit learn library.

4.4.5 Hyperparameters optimization.

The parameters of each estimator used during experimentation have been optimised by cross-

validated grid-search over a specify parameter grid. Cross validation (Flach, 2012) is a

resampling process to obtain different portions of data set to testing the model training on

different iterations. In our case, 5 partitions have been used on optimization of parameters for

each model. Grid Search (Liashchynskyi & Liashchynskyi, 2019) is a traditional method of

hyperparameters searching over a given subset of the hyperparameters grid from training

algorithms. Because of some values of machine learning algorithm parameter space can be real

or unlimited values, it is necessary to specify a parameter grid to apply this method. In this paper

grid search provides by GridSearchCV based on out-of-bag score from scikit-learn have been

applied using only the training subset. This method generates candidates from a grid of

parameter which its values of parameters have been specified with the param_grid parameter.

Table 4 lists results obtained via GridSearchCV method. Parameters which are not list on table 4

have been used by default option available on scikit-learn and random_state parameter which

control the randomize on learning have been selected as 123 in each model except Random

Forest. Random Forest is a stochastic model and all results showed are the average between

results obtained from 30 different seeds to counter random effects on results, appendice X shows

each result achieved per each seed. XGBoost can behave as stochastic model also, however it

acted as deterministic because of subsample parameter have been selected as 1, based on

GridSearchCV results obtained. To experiment against imbalanced on class distribution,

class_weight parameter as balanced has been applied on CART and Random Forest. No other

techniques have been applied on kNN model, to leave one without any strategy applied to

compare results of strategies adopted. In XGBoost model, max_delta_step parameter setup might

help when classes are extremely imbalanced such as our problem, and no other techniques have

been necessary to obtain good performance with this model. Equation 19 shows how works

class_weight parameter (King & Zeng, 2001).

30

 𝑤𝑗 =
𝑛

𝑘𝑛𝑗
 (20)

Where wj is the weight to class j, n is the number of observations, nj is the number of

observations in class j, and k is the total number of classes.

Table 4. The results of GridSearchCV.

Models Parameters Grid of values Optimized value

kNN n_neighbors 3, 9,15,1,25 15

weights uniform,distance distance

algorithm auto,kd_tree auto

leaf_size 15,30,45 30

p 1,2 2

n_jobs None, -1 -1

CART

criterion gini,entropy gini

splitter best,random best

max_features auto, sqrt, log2 log2

max_depth 1,5,10,50,100 50

max_leaf_nodes 1,5,10,50,100 100

ccp_alpha 0.1,0.001,0.00 0.00

n_jobs None, -1 -1

class_weight balanced balanced

Random Forest criterion gini, entropy gini

max_depth None,3,10,50 None

max_features auto, sqrt, log2 auto

n_estimator 25,50, 150,300 150

n_jobs None, -1 -1

class_weight balanced balanced

XGBoost n_estimator 25,50,150,300 150

booster gbtree,gblinear,dart gbtree

subsample 0.5,0.8,1 1

colsample_bytree 0.5,0.8,1 1

objective multi:softmax multi:softmax

gamma 0.5,1,2,5 1

n_jobs None, -1 -1

eta 0.1,0.3,0.5,1 0.3

max_delta_step 0,1 1

31

 Results

Table 5 lists the results of performance measures in the application of the experimentation

described in three different scenarios, Base case, where feature selection has not been applied,

eCFS which constitutes the extended correlation-based case and the case of Exhaustive search of

CFS. Accuracy, AUC score, Cohen’s Kappa have been collected to compare all results achieved,

also, overall precision, overall Recall and overall F1-score have been listed for the same purpose.

All models selected in each scenario presents similar behaviour in accuracy metric, standing up

from 98%, and it is explained by high accuracy reached of majority class labelled as white. This

situation means that accuracy could not be a good performance to compare the results, and it is

better to focus on AUC score and Cohen´s Kappa which presents different results in each case.

Table 5. Test results obtained with selected models.

ML method Feature set Accuracy AUC
Cohen’s

Kappa
Precision Recall F1-score

Elapsed

time

kNN

Base 0.9872 0.7686 0.3251 0.6162 0.4317 0.4811 00:15.32

eCFS 0.9876 0.7729 0.3844 0.6300 0.4833 0.5261 00:13.33

XCFS 0.9880 0.7841 0.4548 0.6447 0.5608 0.5836 00:07.95

CART

Base 0.9835 0.7173 0.3766 0.5490 0.5405 0.5445 00:08.68

eCFS 0.9827 0.7157 0.3626 0.5354 0.5381 0.5367 00:07.53

XCFS 0.9808 0.7822 0.4096 0.5425 0.6482 0.5864 00:06.26

Random

Forest*

Base 0.9887 0.9493 0.4145 0.7399 0.4937 0.5650 01:17.20

eCFS 0.9885 0.9430 0.4358 0.7128 0.5194 0.5816 01:08.41

XCFS 0.9844 0.8868 0.4513 0.5912 0.6366 0.6106 01:01.75

XGBoost

Base 0.9901 0.9874 0.4877 0.8391 0.5525 0.6064 08:28.37

eCFS 0.9900 0.9868 0.4847 0.8337 0.5510 0.6033 08:21.88

XCFS 0.9897 0.9840 0.4613 0.8282 0.5348 0.5839 07:46.20

Note: * Random Forest results listed are the average results from results of 30 different seed. Desviation has not been included

because of the minimal variability among seeds.

CART and kNN have been achieved equivalent level of AUC. However, feature selection has

been increased the AUC score in higher level on CART model, especially in the XCFS scenario,

where an exhaustive search has been applied. Random Forest and XGBoost have been presented

better results than the previous models but feature selection scenarios have not reached better

results comparing with base case on these models. Anyway, XGBoost which is the method that

have been achieved the highest result, does not present a big variability between the three

scenarios of experimentation applied. This situation is different for Random Forest, which

presents a lower level on AUC measure in XCFS feature selection case.

32

XGboost has the same behaviour in the case of Kappa performance, being again the model that

achieves the best results, it does not present high variability of results between the three

scenarios, although XCFS is the one that achieves the worst results. The two scenarios of feature

selection seem to perform better in CART and kNN techniques, where XCFS improves the result

obtained, bringing results closer to Random Forest and XGBoost metrics achieved, standing up

from 0.40 in both cases. Same conduct can be found on Random Forest model, where 0.45 have

been reached in XCFS scenario.

Focusing on precision, recall and F1-score overall metrics, every model in each scenarios seems

to perform same pattern on these metrics, a good level on precision, and lower level on recall a

therefore on F1-score. CART has been the model with lower performance, follow by kNN.

XGBoost has been again the best method and reached the highest perform, but Random Forest

achieves the best results on F1-score and recall in XCFS scenario.

Figure 4. Precision, Recall and F1-score on base set.

Note: * Random Forest results listed are the average results from results of 30 different seed. Desviation has not been included

because of the minimal variability among seeds.

33

Figures 4, 5, and 6 includes results reached about precision, recall and F1-score of each

ransomware label in the three scenarios analysed. As these figures show, the pattern observed in

the performance of overall metrics is due to the variability between the false positives and false

negatives belonging to the different classes of ransomare analysed, achieving worse results in the

cases of montrealCryptoLocker and paduaCryptoWall, and reaching the best results of precision,

recall and f1-score for the montrealCryptXXX class, and less in Princeton Family. Figure 4

shows the results from the base case, and it is easy to see how XGBoost results obtained the best

results of Precision in all classes. However, CART achieved better performance with

montrealCryptoLocker and paduaCryptoWall of Recall metric and consequently on F1-score.

Random Forest model also obtained better Recall and F1-score with these classes but in smaller

measure than CART.

Figure 5. Precision, Recall and F1-score on eCFS feature subset.

Note: * Random Forest results listed are the average results from results of 30 different seed. Desviation has not been included

because of the minimal variability among seeds.

34

Figure 6. Precision, Recall and F1-score on XCFS feature subset.

Note: * Random Forest results listed are the average results from results of 30 different seed. Desviation has not been included

because of the minimal variability among seeds.

Figure 5 represents the results obtained in eCFS feature subset, where the same different in

models metrics can be found with less variability between them. Also, Random Forest reached

better Recall and F1-score with montrealCryptoLocker and paduaCryptoWall classes than

CART, and the feature selection based on extended correlation improved the learning of Random

Forest technique in higher way than the rest of models. The variability of results has been further

reduced with the XCFS feature selection application as figure 6 shows. In all scenarios,

montrealCryptXXX is the easiest ransomware label to be detected excluding white label follow

by both labels from princeton family. To extend this analysis, appendix A collects normalized

confusion matrices of each scenario studied, where the explanation of the differences obtained in

the classification of labels can be found. As confusion matrices shows, the false negatives of

ransomware labels have been concentrated as white. However, no false negatives have been

founded between ransomware labels, and white label has not been classified as ransomware label

35

in any case. The recall metrics reached are explained by this fact because of the high true

negative rate obtained. Also, both feature selection methods applied have been improved the

false negative and true positive rate in each case.

Feature selection provides a faster and more optimal process in a huge data set such the used on

this work, using less information represented by less features selected did not generate a

remarkable variability on results obtained, but needs less time to reach equal results. Elapsed

time lists on table 5 consists in the duration of training phase and is measure in minutes. XCFS

improves a lot the results achieved, and only in the XGBoost method, the results are lower than

base scenario, although with a minimal variability. This situation allows to affirm that in our

case, XCFS is a valid strategy which enables to achieve similar or better results with less features

compared to the baseline data set.

36

 Conclusions

Bitcoin Network constitutes a public ledger without the presence of a central authority and

involves a pseudo-anonymous around the blockchain transactions which allows to criminals

extorting money from their victims. Ransomware malware could be one of the most dangerous

cybercriminal activities on this scenario.

The technology of blockchain used in bitcoin network makes possible to organise massive data

such the collected on the data set used in our analysis, that makes possible the implementation of

KDD methodology to extract information from transactions of cybercrime and illegal activities

such as ransomware payments. However, implementing machine learning techniques with the

dimension of the studied data set can lead to high computation times and make difficult the

knowledge extraction from data. In this context, feature selection enables to simplify

classification process using less information represented by less features. Also, the recorder of

information described may constitutes an imbalanced of classes in data set such as used on this

work, and only few instances have been recorded of a lot of labels included on our data set,

implying the necessity to focus on most common ransomware labels added, analysing only the 6

top labels including the free ransomware class categorized as white in a subsampling of the total

of data. A few methods to solve this problem have been described on this paper such as cost

sensitive learning and SMOTE. Anyway, we focused on the use of machine learning techniques

applied without any imbalanced strategy such as kNN and XGBoost, and the use of weights per

each class in CART and Random Forest. The results confirms that ensemble methods are much

better to classify the instances testing, and XGBoost is the one which has been achieved the best

results in all performances, by fixing the parameter max_delta_step.

The methodology proposed on this paper aims to detect ransomware from three different

families, Monreal, Padua and Princeton, and we discovered that the performance achieved of

each family have been different in the transaction’s classification from ransomware payments.

MonrealCryptoLocker and paduaCryptoWall have been the most difficult to detect in our case,

and montrealCryptXXX the easiest one. This situation implies the necessity of more information

and data from the rest of labelled categorized and ransomware developers are not blind, as new

techniques and methods come out to detect ransomware cybercriminal activities, they improve

37

their development, creating a tug of war that makes the balance fall on their side. It is very

important to continue making progress in stopping ransomware on cryptocurrency networks to

achieve that blockchain transactions are not the epicenter of current cybercrime, due to the great

advantages that offer to development of these activities.

38

References

Akcora, C. G., Li, Y., Gel, Y. R., & Kantarcioglu, M. (2020). Bitcoinheist: Topological data

analysis for ransomware prediction on the bitcoin blockchain. Proceedings of the Twenty-

Ninth International Joint Conference on Artificial Intelligence,

Almashhadani, A. O., Kaiiali, M., Sezer, S., & O’Kane, P. (2019). A multi-classifier network-

based crypto ransomware detection system: A case study of locky ransomware. Ieee Access,

7, 47053-47067.

Baesens, B. (2014). Analytics in a big data world: The essential guide to data science and its

applications John Wiley & Sons.

Bartoletti, M., Pes, B., & Serusi, S. (2018). Data mining for detecting bitcoin ponzi schemes.

Paper presented at the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT),

75-84.

Blanco, J. A., & Tallón-Ballesteros, A. J. (2021). Supervised machine learning techniques in the

bitcoin transactions. A case of ransomware classification. Paper presented at the

International Workshop on Soft Computing Models in Industrial and Environmental

Applications, 803-810.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Brewer, R. (2016). Ransomware attacks: Detection, prevention and cure. Network Security,

2016(9), 5-9.

Brownlee, J. (2016). XGBoost with python: Gradient boosted trees with XGBoost and scikit-

learn Machine Learning Mastery.

39

Cabaj, K., Gregorczyk, M., & Mazurczyk, W. (2018). Software-defined networking-based crypto

ransomware detection using HTTP traffic characteristics. Computers & Electrical

Engineering, 66, 353-368.

Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new

perspective. Neurocomputing, 300, 70-79.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic

minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Paper presented at

the Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery

and Data Mining, 785-794.

Chen, T., Li, Z., Zhu, Y., Chen, J., Luo, X., Lui, J. C., . . . Zhang, X. (2020). Understanding

ethereum via graph analysis. ACM Transactions on Internet Technology (TOIT), 20(2), 1-

32.

Chen, W., Zheng, Z., Ngai, E. C., Zheng, P., & Zhou, Y. (2019). Exploiting blockchain data to

detect smart ponzi schemes on ethereum. IEEE Access, 7, 37575-37586.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1), 37-46.

Dalal, S., Wang, Z., & Sabharwal, S. (2021). Identifying ransomware actors in the bitcoin

network. arXiv Preprint arXiv:2108.13807,

40

Egunjobi, S., Parkinson, S., & Crampton, A. (2019). Classifying ransomware using machine

learning algorithms. Paper presented at the International Conference on Intelligent Data

Engineering and Automated Learning, 45-52.

Elkan, C. (2001). The foundations of cost-sensitive learning. Paper presented at the International

Joint Conference on Artificial Intelligence, , 17(1) 973-978.

F. Reid, & M. Harrigan. (2011). An analysis of anonymity in the bitcoin system. Paper presented

at the - 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and

2011 IEEE Third International Conference on Social Computing, 1318-1326.

doi:10.1109/PASSAT/SocialCom.2011.79

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-

874.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge

discovery in databases. AI Magazine, 17(3), 37.

Flach, P. (2012). Machine learning: The art and science of algorithms that make sense of data

Cambridge University Press.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis,

38(4), 367-378.

Goldsmith, D., Grauer, K., & Shmalo, Y. (2020). Analyzing hack subnetworks in the bitcoin

transaction graph. Applied Network Science, 5(1), 1-20.

Hall, M. A. (1999). Correlation-based feature selection for machine learning.

41

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The

WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1),

10-18.

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach

for imbalanced learning. Paper presented at the 2008 IEEE International Joint Conference

on Neural Networks (IEEE World Congress on Computational Intelligence), 1322-1328.

Jang, H., & Lee, J. (2017). An empirical study on modeling and prediction of bitcoin prices with

bayesian neural networks based on blockchain information. Ieee Access, 6, 5427-5437.

Jay, P., Kalariya, V., Parmar, P., Tanwar, S., Kumar, N., & Alazab, M. (2020). Stochastic neural

networks for cryptocurrency price prediction. IEEE Access, 8, 82804-82818.

Jourdan, M., Blandin, S., Wynter, L., & Deshpande, P. (2018). Characterizing entities in the

bitcoin blockchain. Paper presented at the 2018 IEEE International Conference on Data

Mining Workshops (ICDMW), 55-62.

Kavipriya, P., & Karthikeyan, K. (2017). A comparative study of feature selection algorithms in

data mining. Int.J.Adv.Res.Comput.Commun.Eng, 6(11)

King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9(2),

137-163.

Koops, B. (2010). The internet and its opportunities for cybercrime. Transnational Criminology

Manual, M.Herzog-Evans, Ed, 1, 735-754.

42

Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: A

big comparison for NAS. arXiv Preprint arXiv:1912.06059,

Ling, C. X., & Sheng, V. S. (2008). Cost-sensitive learning and the class imbalance problem.

Encyclopedia of Machine Learning, 2011, 231-235.

Linoy, S., Stakhanova, N., & Ray, S. (2021). De‐anonymizing ethereum blockchain smart

contracts through code attribution. International Journal of Network Management, 31(1),

e2130.

Liu, X. F., Jiang, X., Liu, S., & Tse, C. K. (2021). Knowledge discovery in cryptocurrency

transactions: A survey. IEEE Access, 9, 37229-37254.

Loh, W. (2008). Classification and regression tree methods. Encyclopedia of Statistics in Quality

and Reliability, 1, 315-323.

McKinney, W. (2011). Pandas: A foundational python library for data analysis and statistics.

Python for High Performance and Scientific Computing, 14(9), 1-9.

Mnich, K., & Rudnicki, W. R. (2020). All-relevant feature selection using multidimensional

filters with exhaustive search. Information Sciences, 524, 277-297.

Montalvo-Garcia, J., Quintero, J. B., & Manrique-Losada, B. (2020). Crisp-dm/smes: A data

analytics methodology for non-profit smes. Paper presented at the Fourth International

Congress on Information and Communication Technology, 449-457.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business

Review, , 21260.

43

Ojala, M., & Garriga, G. C. (2010). Permutation tests for studying classifier performance.

Journal of Machine Learning Research, 11(6)

Paquet-Clouston, M., Haslhofer, B., & Dupont, B. (2019a). Ransomware payments in the bitcoin

ecosystem. Journal of Cybersecurity, 5(1), tyz003.

Paquet-Clouston, M., Haslhofer, B., & Dupont, B. (2019b). Ransomware payments in the bitcoin

ecosystem. Journal of Cybersecurity, 5(1), tyz003.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Dubourg, V.

(2011). Scikit-learn: Machine learning in python. The Journal of Machine Learning

Research, 12, 2825-2830.

Perkel, J. M. (2018). Why jupyter is data scientists' computational notebook of choice. Nature,

563(7732), 145-147.

Pham, T., & Lee, S. (2016). Anomaly detection in bitcoin network using unsupervised learning

methods. arXiv Preprint arXiv:1611.03941,

Provost, F., & Kohavi, R. (1998). Glossary of terms. Journal of Machine Learning, 30(2-3), 271-

274.

Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini index and

information gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1), 77-93.

Ranshous, S., Joslyn, C. A., Kreyling, S., Nowak, K., Samatova, N. F., West, C. L., & Winters,

S. (2017). Exchange pattern mining in the bitcoin transaction directed hypergraph. Paper

44

presented at the International Conference on Financial Cryptography and Data Security,

248-263.

Saad, M., Choi, J., Nyang, D., Kim, J., & Mohaisen, A. (2019). Toward characterizing

blockchain-based cryptocurrencies for highly accurate predictions. IEEE Systems Journal,

14(1), 321-332.

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research

directions. SN Computer Science, 2(3), 1-21.

Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised learning

algorithms for pattern classification. International Journal of Advanced Research in

Artificial Intelligence, 2(2), 34-38.

Schwab, K. (2017). The fourth industrial revolution Currency.

Sun Yin, H. H., Langenheldt, K., Harlev, M., Mukkamala, R. R., & Vatrapu, R. (2019).

Regulating cryptocurrencies: A supervised machine learning approach to de-anonymizing

the bitcoin blockchain. Journal of Management Information Systems, 36(1), 37-73.

Tallón-Ballesteros, A. J., Cavique, L., & Fong, S. (2019). Addressing low dimensionality feature

subset selection: ReliefF (-k) or extended correlation-based feature selection (eCFS)? Paper

presented at the International Workshop on Soft Computing Models in Industrial and

Environmental Applications, 251-260.

Toyoda, K., Ohtsuki, T., & Mathiopoulos, P. T. (2018). Multi-class bitcoin-enabled service

identification based on transaction history summarization. Paper presented at the 2018 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and

45

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), 1153-1160.

VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data "

O'Reilly Media, Inc.".

Wang, J. (2013). Pearson correlation coefficient. Encyclopedia of Systems Biology, 1671

Weber, M., Domeniconi, G., Chen, J., Weidele, D. K. I., Bellei, C., Robinson, T., & Leiserson,

C. E. (2019). Anti-money laundering in bitcoin: Experimenting with graph convolutional

networks for financial forensics. arXiv Preprint arXiv:1908.02591,

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., . . . Philip, S. Y. (2008).

Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37.

Yeh, S. (2002). Using trapezoidal rule for the area under a curve calculation. Proceedings of the

27th Annual SAS® User Group International (SUGI’02),

Yen, S., & Lee, Y. (2006). Under-sampling approaches for improving prediction of the minority

class in an imbalanced dataset. Intelligent control and automation (pp. 731-740) Springer.

Zimba, A., Simukonda, L., & Chishimba, M. (2017). Demystifying ransomware attacks: Reverse

engineering and dynamic malware analysis of wannacry for network and information

security. Zambia ICT Journal, 1(1), 35-40.

Zola, F., Eguimendia, M., Bruse, J. L., & Urrutia, R. O. (2019). Cascading machine learning to

attack bitcoin anonymity. Paper presented at the 2019 IEEE International Conference on

Blockchain (Blockchain), 10-17.

46

Appendices

Appendix A. Normalized Confusion Matrices of each scenario studied.

Appendix A.1. Normalized Confusion Matrix from Base feature set.

47

Appendix A.2. Normalized Confusion Matrix from eCFS feature subset.

48

Appendix A.3.Normalized Confusion Matrix from XCFS feature subset.

49

Appendix B. Random Forest results from 30 different seeds.

Appendix B.1. Results of seed from Random Forest on Base feature subset.

SEED: {'random_state ': 111}

elapsed time: 0:01:18.242116 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9151 0.8030 0.8554 604

montrealCryptoLocker 0.4070 0.0846 0.1401 2329

 paduaCryptoWall 0.5444 0.1385 0.2208 3098

 princetonCerber 0.7836 0.4271 0.5529 2306

 princetonLocky 0.8187 0.5290 0.6427 1656

 white 0.9903 0.9984 0.9943 718821

 accuracy 0.9888 728814

 macro avg 0.7432 0.4968 0.5677 728814

 weighted avg 0.9855 0.9888 0.9860 728814

Cohen's Kappa: 0.4184425661811627

roc auc score: 0.9497114355128738

--

SEED: {'random_state ': 123}

 precision recall f1-score support

 montrealCryptXXX 0.9141 0.7930 0.8493 604

montrealCryptoLocker 0.3959 0.0833 0.1376 2329

 paduaCryptoWall 0.5357 0.1356 0.2164 3098

 princetonCerber 0.7772 0.4206 0.5459 2306

 princetonLocky 0.8111 0.5314 0.6421 1656

 white 0.9903 0.9984 0.9943 718821

 accuracy 0.9887 728814

 macro avg 0.7374 0.4937 0.5643 728814

 weighted avg 0.9853 0.9887 0.9859 728814

Cohen's Kappa: 0.41425530882317085

roc auc score: 0.9492726850586313

--

SEED: {'random_state ': 222}

elapsed time: 0:01:16.715073 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9140 0.7914 0.8483 604

montrealCryptoLocker 0.3876 0.0807 0.1336 2329

 paduaCryptoWall 0.5405 0.1378 0.2197 3098

 princetonCerber 0.7797 0.4237 0.5490 2306

 princetonLocky 0.8158 0.5242 0.6382 1656

 white 0.9903 0.9984 0.9943 718821

 accuracy 0.9887 728814

 macro avg 0.7380 0.4927 0.5639 728814

 weighted avg 0.9853 0.9887 0.9859 728814

Cohen's Kappa: 0.41409648768355967

roc auc score: 0.9491407194416545

--

SEED: {'random_state ': 234}

elapsed time: 0:01:21.401691 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9157 0.7914 0.8490 604

50

montrealCryptoLocker 0.4008 0.0842 0.1391 2329

 paduaCryptoWall 0.5409 0.1388 0.2209 3098

 princetonCerber 0.7835 0.4206 0.5474 2306

 princetonLocky 0.8196 0.5296 0.6434 1656

 white 0.9903 0.9984 0.9943 718821

 accuracy 0.9887 728814

 macro avg 0.7418 0.4938 0.5657 728814

 weighted avg 0.9854 0.9887 0.9860 728814

Cohen's Kappa: 0.41590735249527777

roc auc score: 0.9488817938194224

--

SEED: {'random_state ': 456}

elapsed time: 0:01:19.922763 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9143 0.7947 0.8503 604

montrealCryptoLocker 0.4020 0.0854 0.1409 2329

 paduaCryptoWall 0.5399 0.1375 0.2192 3098

 princetonCerber 0.7756 0.4211 0.5458 2306

 princetonLocky 0.8148 0.5127 0.6294 1656

 white 0.9903 0.9984 0.9943 718821

 accuracy 0.9887 728814

 macro avg 0.7395 0.4916 0.5633 728814

 weighted avg 0.9853 0.9887 0.9859 728814

Cohen's Kappa: 0.4125338675640249

roc auc score: 0.9495523162753577

--

SEED: {'random_state ': 124}

elapsed time: 0:01:25.055930 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9235 0.7997 0.8571 604

montrealCryptoLocker 0.3947 0.0837 0.1382 2329

 paduaCryptoWall 0.5339 0.1346 0.2150 3098

 princetonCerber 0.7841 0.4267 0.5527 2306

 princetonLocky 0.8168 0.5332 0.6452 1656

 white 0.9903 0.9984 0.9943 718821

 accuracy 0.9888 728814

 macro avg 0.7406 0.4961 0.5671 728814

 weighted avg 0.9854 0.9888 0.9860 728814

Cohen's Kappa: 0.4168676647394576

roc auc score: 0.9499861806298356

--

SEED: {'random_state ': 221}

elapsed time: 0:01:19.527963 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9195 0.7947 0.8526 604

montrealCryptoLocker 0.3900 0.0837 0.1379 2329

 paduaCryptoWall 0.5317 0.1352 0.2156 3098

 princetonCerber 0.7822 0.4159 0.5430 2306

 princetonLocky 0.8204 0.5296 0.6437 1656

 white 0.9903 0.9984 0.9943 718821

 accuracy 0.9887 728814

 macro avg 0.7390 0.4929 0.5645 728814

 weighted avg 0.9853 0.9887 0.9859 728814

Cohen's Kappa: 0.4131871579077505

roc auc score: 0.9476592440389755

51

Appendix B.2. Results of seed from Random Forest on eCFS feature subset.

SEED: {'random_state ': 111}

elapsed time: 0:01:09.171795 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9026 0.7980 0.8471 604

montrealCryptoLocker 0.3267 0.0919 0.1434 2329

 paduaCryptoWall 0.5056 0.1598 0.2428 3098

 princetonCerber 0.7330 0.4536 0.5604 2306

 princetonLocky 0.8131 0.6069 0.6950 1656

 white 0.9907 0.9978 0.9942 718821

 accuracy 0.9886 728814

 macro avg 0.7120 0.5180 0.5805 728814

 weighted avg 0.9852 0.9886 0.9861 728814

Cohen's Kappa: 0.43494662702029285

roc auc score: 0.9434081834391274

--

SEED: {'random_state ': 123}

elapsed time: 0:01:09.765087 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9072 0.7930 0.8463 604

montrealCryptoLocker 0.3288 0.0927 0.1447 2329

 paduaCryptoWall 0.5120 0.1578 0.2413 3098

 princetonCerber 0.7325 0.4571 0.5629 2306

 princetonLocky 0.8099 0.6123 0.6974 1656

 white 0.9907 0.9978 0.9942 718821

 accuracy 0.9886 728814

 macro avg 0.7135 0.5185 0.5811 728814

 weighted avg 0.9853 0.9886 0.9862 728814

Cohen's Kappa: 0.43637196480358875

roc auc score: 0.9430684424930051

--

SEED: {'random_state ': 222}

elapsed time: 0:01:08.184019 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9118 0.8046 0.8549 604

montrealCryptoLocker 0.3278 0.0940 0.1461 2329

 paduaCryptoWall 0.5025 0.1595 0.2421 3098

 princetonCerber 0.7307 0.4566 0.5620 2306

 princetonLocky 0.8089 0.6135 0.6978 1656

 white 0.9907 0.9978 0.9942 718821

 accuracy 0.9886 728814

 macro avg 0.7121 0.5210 0.5829 728814

 weighted avg 0.9852 0.9886 0.9862 728814

Cohen's Kappa: 0.4369598868998912

roc auc score: 0.9433822407037198

--

SEED: {'random_state ': 234}

elapsed time: 0:01:07.748275 minutes

 precision recall f1-score support

 montrealCryptXXX 0.8987 0.8079 0.8509 604

montrealCryptoLocker 0.3293 0.0936 0.1458 2329

 paduaCryptoWall 0.5099 0.1582 0.2414 3098

 princetonCerber 0.7390 0.4592 0.5665 2306

 princetonLocky 0.8159 0.6129 0.7000 1656

52

 white 0.9907 0.9978 0.9943 718821

 accuracy 0.9886 728814

 macro avg 0.7139 0.5216 0.5831 728814

 weighted avg 0.9853 0.9886 0.9862 728814

Cohen's Kappa: 0.4381788303179135

roc auc score: 0.9442334432137223

--

SEED: {'random_state ': 456}

elapsed time: 0:01:10.085568 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9096 0.7997 0.8511 604

montrealCryptoLocker 0.3236 0.0906 0.1416 2329

 paduaCryptoWall 0.5166 0.1611 0.2456 3098

 princetonCerber 0.7313 0.4545 0.5606 2306

 princetonLocky 0.8106 0.6075 0.6945 1656

 white 0.9907 0.9978 0.9942 718821

 accuracy 0.9886 728814

 macro avg 0.7137 0.5185 0.5813 728814

 weighted avg 0.9852 0.9886 0.9862 728814

Cohen's Kappa: 0.4357312729806685

roc auc score: 0.9427998090759847

--

SEED: {'random_state ': 124}

elapsed time: 0:01:08.765559 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9103 0.8063 0.8551 604

montrealCryptoLocker 0.3226 0.0902 0.1409 2329

 paduaCryptoWall 0.5046 0.1582 0.2408 3098

 princetonCerber 0.7304 0.4558 0.5613 2306

 princetonLocky 0.8129 0.6111 0.6977 1656

 white 0.9907 0.9978 0.9942 718821

 accuracy 0.9886 728814

 macro avg 0.7119 0.5199 0.5817 728814

 weighted avg 0.9852 0.9886 0.9861 728814

Cohen's Kappa: 0.43559501276497437

roc auc score: 0.9432287075724529

--

SEED: {'random_state ': 221}

elapsed time: 0:01:08.303372 minutes

 precision recall f1-score support

 montrealCryptXXX 0.9041 0.7964 0.8468 604

montrealCryptoLocker 0.3263 0.0927 0.1444 2329

 paduaCryptoWall 0.5133 0.1614 0.2456 3098

 princetonCerber 0.7332 0.4540 0.5608 2306

 princetonLocky 0.8069 0.6105 0.6951 1656

 white 0.9907 0.9978 0.9942 718821

 accuracy 0.9886 728814

 macro avg 0.7124 0.5188 0.5812 728814

 weighted avg 0.9852 0.9886 0.9862 728814

Cohen's Kappa: 0.43603108643058

roc auc score: 0.9427206803394461

Appendix B.3.Results of seed from Random Forest on XCFS feature subset.

SEED: {'random_state ': 111}

elapsed time: 0:01:05.163375 minutes

53

 precision recall f1-score support

 montrealCryptXXX 0.8763 0.8675 0.8719 604

montrealCryptoLocker 0.1396 0.1537 0.1463 2329

 paduaCryptoWall 0.3451 0.2999 0.3209 3098

 princetonCerber 0.5241 0.6696 0.5880 2306

 princetonLocky 0.6710 0.8436 0.7475 1656

 white 0.9928 0.9915 0.9921 718821

 accuracy 0.9844 728814

 macro avg 0.5915 0.6376 0.6111 728814

 weighted avg 0.9850 0.9844 0.9846 728814

Cohen's Kappa: 0.45219340860099655

roc auc score: 0.9008175256103877

--

SEED: {'random_state ': 123}

elapsed time: 0:01:05.044806 minutes

 precision recall f1-score support

 montrealCryptXXX 0.8760 0.8659 0.8709 604

montrealCryptoLocker 0.1400 0.1546 0.1469 2329

 paduaCryptoWall 0.3452 0.3002 0.3211 3098

 princetonCerber 0.5233 0.6678 0.5868 2306

 princetonLocky 0.6746 0.8424 0.7492 1656

 white 0.9927 0.9915 0.9921 718821

 accuracy 0.9844 728814

 macro avg 0.5920 0.6371 0.6112 728814

 weighted avg 0.9850 0.9844 0.9846 728814

Cohen's Kappa: 0.45193630090700687

roc auc score: 0.9015352739098553

--

SEED: {'random_state ': 222}

elapsed time: 0:01:04.153473 minutes

 precision recall f1-score support

 montrealCryptXXX 0.8746 0.8659 0.8702 604

montrealCryptoLocker 0.1372 0.1516 0.1441 2329

 paduaCryptoWall 0.3386 0.2950 0.3153 3098

 princetonCerber 0.5229 0.6678 0.5866 2306

 princetonLocky 0.6726 0.8412 0.7475 1656

 white 0.9927 0.9915 0.9921 718821

 accuracy 0.9844 728814

 macro avg 0.5898 0.6355 0.6093 728814

 weighted avg 0.9849 0.9844 0.9846 728814

Cohen's Kappa: 0.4494683424611059

roc auc score: 0.9012223682169104

--

SEED: {'random_state ': 234}

elapsed time: 0:01:03.041988 minutes

 precision recall f1-score support

 montrealCryptXXX 0.8729 0.8642 0.8686 604

montrealCryptoLocker 0.1366 0.1516 0.1437 2329

 paduaCryptoWall 0.3416 0.2966 0.3176 3098

 princetonCerber 0.5245 0.6683 0.5877 2306

 princetonLocky 0.6721 0.8406 0.7470 1656

 white 0.9927 0.9915 0.9921 718821

 accuracy 0.9844 728814

 macro avg 0.5901 0.6355 0.6094 728814

 weighted avg 0.9849 0.9844 0.9846 728814

Cohen's Kappa: 0.4498472683552991

roc auc score: 0.9013118810516

--

SEED: {'random_state ': 456}

elapsed time: 0:01:04.510770 minutes

54

 precision recall f1-score support

 montrealCryptXXX 0.8773 0.8642 0.8707 604

montrealCryptoLocker 0.1386 0.1520 0.1450 2329

 paduaCryptoWall 0.3461 0.3012 0.3221 3098

 princetonCerber 0.5230 0.6657 0.5858 2306

 princetonLocky 0.6726 0.8424 0.7480 1656

 white 0.9927 0.9915 0.9921 718821

 accuracy 0.9844 728814

 macro avg 0.5917 0.6362 0.6106 728814

 weighted avg 0.9849 0.9844 0.9846 728814

Cohen's Kappa: 0.45153765638374554

roc auc score: 0.9023455287070979

--

SEED: {'random_state ': 124}

elapsed time: 0:01:06.649751 minutes

 precision recall f1-score support

 montrealCryptXXX 0.8792 0.8675 0.8733 604

montrealCryptoLocker 0.1381 0.1516 0.1445 2329

 paduaCryptoWall 0.3473 0.2992 0.3215 3098

 princetonCerber 0.5266 0.6700 0.5897 2306

 princetonLocky 0.6724 0.8430 0.7481 1656

 white 0.9927 0.9916 0.9922 718821

 accuracy 0.9845 728814

 macro avg 0.5927 0.6372 0.6116 728814

 weighted avg 0.9850 0.9845 0.9847 728814

Cohen's Kappa: 0.45270411168679625

roc auc score: 0.9011935345065591

--

SEED: {'random_state ': 221}

elapsed time: 0:01:03.709106 minutes

 precision recall f1-score support

 montrealCryptXXX 0.8790 0.8659 0.8724 604

montrealCryptoLocker 0.1386 0.1529 0.1454 2329

 paduaCryptoWall 0.3450 0.2989 0.3203 3098

 princetonCerber 0.5231 0.6674 0.5865 2306

 princetonLocky 0.6720 0.8412 0.7471 1656

 white 0.9927 0.9915 0.9921 718821

 accuracy 0.9844 728814

 macro avg 0.5917 0.6363 0.6106 728814

 weighted avg 0.9849 0.9844 0.9846 728814

Cohen's Kappa: 0.4512145320528079

roc auc score: 0.9005525358577926

