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Abstract 

 

 

Hadjer Medjadi. 2022: Numerical Techniques for Solving the Black-Scholes equation. Written 

in English. UNIA, Spain. 

The Black-Scholes model (named after Fischer Black and Myron Scholes) for option valuation 

is a model used in financial mathematics to theoretically estimate the value of a financial option, 

of the European option type. However, solving the Black-Scholes equation in higher dimensions 

requires numerical techniques. In this Master’s thesis, we propose a Chebyshev Pseudo spectral 

method and Euler Implicit method for pricing European call options and a comparative study of 

several possible configurations of these two methods. An option is a financial asset that offers 

the buyer the opportunity to buy or sell depending on the type of contract they hold. Each options 

contract will have a specific expiration date by which the holder must exercise their option, and 

it is either worthless or worth more than it was bought for. Black-Scholes partial differential 

equation presented in 1973, models the fair value of a European call option under certain market 

assumption. The terminal condition is derived from the difference between the stock price upon 

maturity and the option strike price, while the boundary conditions are derived from the put-call 

parity. We use the Chebyshev points as a set of points when discretizing Black-Scholes equation. 

Knowing that options has been priced with the use of finite differences it works as a comparison 

to the results of Chebyshev Pseudo- Spectral method. By approximating the initial condition with 

orthogonal Chebyshev polynomials and truncating the domain, the convergence rate increases 

significantly. 

In this context, numerical experiments confirm a considerable increase in efficiency, especially 

for large data sets. [1] [2] [2] [3] [4] 
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1 Introduction 
 

       This Master’s thesis is about pricing European call options.  

      A European call option is a derivative contract that gives the keeper (the holder) the rights 

but not obligation to buy the underlying asset at the defined price at expiry date (exercise date). 

For an investor to profit from a call option, the stock’s price, at expiry, had to be trading high 

enough above the strike price (the exercise price) to cover the cost of option premium. The 

exercise price and the expiry date are determined at the time when the option is written. 

 

A European call option is mathematically simpler than an American call option, which is 

another type of option.  The European call option can be only exercised on the exercise date. 

While the latter allows the holder to exercise the option rights at any time before and including 

the day of expiration, which allows the keeper to capture profit as soon as the stock price moves 

favourably, and to take advantage of dividend announcements as well. 

The European / American classification has nothing to do with the continent of origin, they are 

actually terms used to describe two different types of option exercise.  

A put option is a contract that gives the owner the right, but not the obligation, to sell a certain 

amount of the underlying asset, at a set price within a specific time. The buyer of a put option 

believes that the underlying stock will drop below the exercise price before the expiration date. 

The owner of a call option wants the asset price to rise, because the higher the stock price is, 

relative to the exercise price, the more the option would be worth, and the owner of a put option 

wants the asset price to fall as low as possible. Option pricing is all about answering the question 

What is the fair value to pay for an option? How much an option is worth on the market depends 

on the time left to the expiry date and the price of the underlying asset. 

 

An investor can buy a call option, with exercise price 23.17 USD (US Dollar) for 0.93 USD, 

and the stock price rise to 25.02 USD at the expiry date, the profit will be 0.92 USD, (25.02-

23.17-0.93) or 99%. If the share price goes below the exercise price, the option is worthless and 

the investor loses his invested money, which means (0.93 USD or 99%).  
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In order to estimate the value of call option at time t=0, the Black-Scholes formula is used. 

Fisher Black, Robert Merton and Myron Scholes, developed a formula for European option in 

1973.  Merton and Scholes received the 1997 Nobel Memorial Prize in Economic Sciences for 

their work, Black was mentioned as a contributor by the Swedish Academy, he could not share 

the prize with Merton and Scholes because of his death in 1995. 

The black-Scholes equation is a parabolic partial differential equation, which describes the price 

of the option over time.  

The one parameter in the model that cannot be observed using market data is the volatility of 

the underlying asset process.  The black-Scholes call price function is strictly monotone 

increasing in volatility. 

Hence, for each observed call price there is a unique volatility, one of the most important 

quantities in finance. 

Implied volatility is a concept specific to options and is a prediction made by market 

participants of the degree to which underlying securities move in the future. implied volatility 

is essentially the real-time estimation of an asset’s price as it trades. This provides the predicted 

volatility of an option’s underlying asset over the entire lifespan of the option, using formulas 

that measure option market expectations. Higher implied volatility indicates that greater option 

price movement is expected in the future.  

The parabolic PDE is solved in one and two dimensions using finite differences and Chebyshev 

Pseudo-Spectral method. Chebyshev Pseudo-Spectral method of solving partial differential 

equations uses global basis functions to approximate the solution function. When this solution 

is smooth the Spectral method can obtain high order numerical solution. We use Chebyshev 

polynomials as basic functions, and Chebyshev collocation points for space discretisation, in a 

subsequent symbolic computing program that retrieves the problem specific information from 

partial differential equations. A coordinate transform function maps the financial space of the 

equation to an appropriate computation space, and a function that applies the partial differential 

operator of the space transformed equation to Chebyshev polynomials at Chebyshev collocation 

points is created. We show numerical results obtained from pricing a European Call option 

using the Black-Scholes model. [5] [6] [3] [1] 
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2 Preliminaries  

 

2.1 The Black-Scholes equation 

 

The black-Scholes equation requires five variables. These inputs are volatility, The price of the 

underlying asset, the strike price of the option, the time until expiration of the option, and the 

risk-free interest rate. With these variables, it is theoretically possible for options sellers to set 

rational prices for the options that they are selling. 

Furthermore, the model predicts that the price of heavily traded assets follows a geometric 

Brownian motion with constant drift and volatility. When applied to a stock option, the model 

incorporates the constant price variation of the stock, the time value of money, the option's 

strike price, and the time to the option's expiry. 

It is fundamental to use a model of the option market, to derive Black-Scholes equation. The 

model for the financial market is:  

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡   (1) 

𝑑𝑆(𝑡) = µ𝑆𝑡  𝑑𝑡 +  𝜎𝑆𝑡 𝑑𝑊𝑡    (2) 

[3] [7] 

B is the price process of a risk-free asset; S is the process of a stock, 𝜇 is some interest 

component times the common price of the stock, and t is the time. The constants 𝑟, 𝜇 𝑎𝑛𝑑 𝜎 are 

deterministic given.  

Where:                                                                                                                                           𝑟 ∶ 

is the risk-free interest rate, 𝜎 ∶ is the volatility and 𝑊 refers to Wiener process, it is a real-

valued continuous-time stochastic process named in honor of the American Mathematician 

Norbert Wiener, it is also known as a standard Brownian motion. The wiener process 𝑊_𝑡   is 

characterised by the following properties: 

1. 𝑊𝑡 = 0   

2. 𝑊 has independent increments: for every 𝑡 > 0 , the future increments 𝑊𝑡+𝑢 −𝑊𝑡  , 𝑢 ≥ 0 , are 

independent of the past values 𝑊𝑠  ,0 ≤  𝑠 ≤ 𝑡.  
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3. 𝑊 has Gaussian increments: 𝑊𝑡+𝑢 − 𝑊𝑡 is normally distributed with mean 0 and variance 

𝑢 ,𝑊𝑡+𝑢 − 𝑊𝑡 ~ 𝑁(0, 𝑢) . 

4. 𝑊 has continuous paths: 𝑊𝑡 is continuous in t. 

 

The Black-Scholes model makes certain assumptions: 

• No dividends are paid out during the life of the option 

• Markets are random, that means that market movements cannot be predicted. 

• The risk-free-rate and volatility of the underlying asset are known and constant. 

• The returns of the underlying asset are normally distributed. 

• The Black-Scholes model is only used to price European options, which can only be exercised 

at expiration. 

• No arbitrage opportunity, which means that there is no way to make a riskless profit for the 

trader.  [7] [1] [3] 

The Black-Scholes equation is: 

𝜕𝑉

𝜕𝑡
+ 
1

2
𝜎2𝑆2 

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0  

(3) 

 

Let 𝑉 (𝑆, 𝑡) be the price of the option as a function of the underlying asset S at time t. There is 

no stochastic term in this equation, which gives us a partial differential equation, rather than a 

stochastic differential equation. V is a “sufficiently regular” function (i.e., continuously 

differentiable with respect to t and twice continuously differentiable with respect to S). Solving 

the Black-Scholes differential equation can be done by using the right boundary conditions. 

To price a European call option, the boundary conditions should be specified (the behaviour 

of the solution while the values of the asset are changing during time, usually at S = 0 and S →

∞, and initial t = 0, or final conditions  t = T when the option expires).        

                                                                                                                                                                                                  

Also:                                     

𝑉 = 𝑚𝑎𝑥(𝑆𝑡 − 𝐾 , 0)   (4) 

Where K is the strike price.      
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In the domain:  

[0, 𝑆𝑚𝑎𝑥] × [0, 𝑇]  (5) 

In particular: 

 

Formula for call options: 

𝐶(𝑆, 𝜏) = 𝑆0𝑁(𝑑1) − 𝐾𝑒
−𝑟𝜏𝑁(𝑑2)  (6) 

 

 C (0, 𝜏) =0 for all 𝜏 

C (S, 𝜏) → S – K as S →∞ 

C (S, 𝜏) = max {S – K, 0} 

 

[3] 

 

Where: 

𝑑1 = 
𝑙𝑛 (

𝑆0
𝐾) +

(𝑟 + 
𝜎2

2
) 𝜏

𝜎√𝑇
  

(7) 

                                                       𝑑2 = 
𝑙𝑛(

𝑆0
𝐾
)+(𝑟− 

𝜎2

2
)𝜏

𝜎√𝑇
= 𝑑1 − 𝜎√𝜏   

(8) 

𝑁(𝑥) =  
1

√2𝜋
 ∫ 𝑒

−𝑦2

2
𝑑𝑦

𝑥

−∞

  
(9) 

 

𝑆0: underlying stock price (current stock) 

K: strike price of the option also known as the exercise price 

 𝜎: volatility 

r: risk free interest rate 

𝜏 = 𝑇 − 𝑡 , it is the time until expiration of the option 
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T: is the time of option expiration  

N: a normal distribution. 

 

This figure below shows the price of a European call option 𝐶(𝑆𝑡) = max (0, 𝑆𝑡 − 𝐾), using 

the strike price K= 40 and 0 ≤ 𝑆 ≤ 200. 

 

Figure 1 Price of a European Call Option C(S) at the time of exercise 

 

      The stock should worth more than the strike price (40 USD) in this example, on the day of 

exercise, so that the option could be exercised. The profit is the difference between the stock 

price and the exercise price. But in the case where the stock worth less than the strike price, 

exercising the option would not have any meaning. Also 𝑆 ≥ 0, comes from the fact that the 

stock prices follow a lognormal distribution because the value of the asset cannot be negative 

(they are bounded by zero). The stock price S can go to infinity. [8] [3] [9] 
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2.1.1 The analytical solution of the Black-Scholes equation  

         We mention two cases:  

1. There exists an analytic solution when:  

• Black-Scholes is one-dimensional, (the option depends only on one stock). 

• The volatility and the interest rate are constant. 

2. No analytic solution exists if: 

1. Black-Scholes equation is multi-dimensional, (the option depends on more than one stock) 

The analytical solution for the Black-Scholes in one-dimensional is given by the equation  (6)  

 

2.1.2 Black-Scholes equation in higher dimensions  

 

       As we said in the second case, when the option depends on more than a stock, the Black-

Scholes equation is multi-dimensional, for example, if it depends on two different stocks, we 

will have a 2-dimensional Black-Scholes equation, hence the dimension of Black-Scholes 

equation is related to the number of stocks on which an option depends. Black-Scholes 2-

dimensional equation is [7] [10] 

𝜕𝑉

𝜕𝑡
+ 𝑠1𝑟

𝜕𝑉

𝜕𝑠1
+ 𝑠2𝑟

𝜕𝑉

𝜕𝑠2
+
1

2
 [𝜎𝜎∗] 11𝑠1

2  
𝜕2𝑉

 𝜕𝑠1
2 +

1

2
[𝜎𝜎∗]22𝑠2

2  
𝜕2𝑉

 𝜕𝑠2
2 

+ [𝜎𝜎∗]12𝑠1𝑠2
𝜕2𝑉

𝜕𝑠1𝜕𝑠2
− 𝑟𝑉 = 0          

(10) 

Black-Scholes d space-dimensional equation is  

𝜕𝑉

𝜕𝑡
+∑𝑟𝑠𝑖

𝜕𝑉

𝜕𝑠𝑖
+
1

2

𝑑

𝑖=1

∑[𝜎𝜎∗]𝑖𝑗𝑠𝑖

𝑑

𝑖,𝑗=1

𝑠𝑗
𝜕2𝑉

𝜕𝑠𝑖𝜕𝑠𝑗
− 𝑟𝑉 = 0  

(11) 

Where  

𝑆𝑖, 𝑆𝑗 are the stocks and 𝑖 ≠ 𝑗 

𝜎∗ is the transpose of the symmetric matrix 𝜎  . The matrix in 2-dimensions is  
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𝜎 =
𝜎11 𝜎12
𝜎21 𝜎22

  

𝜎11  refers to the volatility for stock 1 and 𝜎22 the volatility for stock 2. 𝜎12 is the correlation 

between the two stocks. With the condition  

𝑉(𝑠1, 𝑠2, 𝑇) = 𝑚𝑎𝑥 (
𝑠1 + 𝑠2
2

− 𝐾 , 0)   
(12) 

In Higher dimensions where 𝑑 > 1 , There is no general analytic solutions for the equation. 

 

2.1.3 Solving a European Call Option  

 

      To price a European Call Option 𝐶(𝑆, 𝑡) we start by solving the heat equation since the 

Black-Scholes EDP can be reduced to this equation. Where S represents the stock price, and 

𝑡 ∈ [0, 𝑇], T is the expiry date. We have the following equation: 

𝜕𝐶

𝜕𝑡
(𝑆, 𝑡) + 𝑟𝑆

𝜕𝐶

𝜕𝑆
(𝑆, 𝑡) +

𝜕2

2
𝑆
2
𝜕2𝐶
𝜕𝑆2(𝑆, 𝑡) = 0, ∀ 𝑡 ∈ [0, 𝑇], 𝑆 ∈ 𝑅+ , 

  𝐶(𝑆, 𝑡) = (𝑆 − 𝐾)+ = 𝑚𝑎𝑥(𝑆 − 𝐸, 0) , ∀ 𝑆 ∈  𝑅+ 

 

(13) 

To solve this equation, we have to make various changes of variable to reduce equation (13) to 

a heat equation of the type: 

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
,     

 𝑢(𝑥, 0) = 𝑢0(𝑥) 

(14) 

         To be able to do that, we start by deleting the coefficients 𝑆 𝑎𝑛𝑑 𝑆² of the Black-Scholes 

equation. 

Let: 𝑆 = 𝐾𝑒𝑥 , 𝑡 = 𝑇 −
2𝜏

𝜎2
 , 𝐶(𝑆, 𝑡) = 𝐾𝑣(𝑥, 𝜏). 

Here we get the condition at 𝑡 = 0 and not at 𝑡 = 𝜏. 

So, we have: 
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𝑣(𝑥, 𝜏) =
1

𝐸
 𝐶 (𝐾𝑒𝑥 , 𝑇 −

2𝜏

𝜎2
) =

1

𝐾
 𝐶(𝑆, 𝑡) 

(15) 

We derive (15) with respect to x: 

                      
𝜕𝑣

𝜕𝑥
  =  

1

𝐾
 
𝜕𝐶

𝜕𝑆

𝜕𝑆

𝜕𝑥
+
1

𝐾
 
𝜕𝐶

𝜕𝑡

𝜕𝑡

𝜕𝑥
   

 =  
𝑆

𝐸

𝜕𝐶

𝜕𝑆
 

We derive again with respect to x: 

                      
𝜕2𝑣

𝜕𝑥2
  =  

𝜕

𝜕𝑥
(
𝜕𝑣

𝜕𝑥
) =

𝜕

𝜕𝑥
(
1

𝐾
𝑆 
𝜕𝐶

𝜕𝑆
)   

               =  
𝜕

𝜕𝑆
(
1

𝐾
𝑆 
𝜕𝐶

𝜕𝑆
)
𝜕𝑆

𝜕𝑥
 

                  =  
1

𝐾
( 
𝜕𝐶

𝜕𝑆
+ 𝑆

𝜕2𝐶

𝜕𝑆2
)𝑆  

        =
𝑆

𝐾
 
𝜕𝐶

𝜕𝑆
+
𝑆²

𝐸
 
𝜕²𝐶

𝜕𝑆²
  

Now we derive (15) with respect to 𝜏 : 

𝜕𝑣

𝜕𝜏
=
1

𝐾
 
𝜕𝐶

𝜕𝑡
 
𝜕𝑡

𝜕𝜏
=
1

𝐾
 
𝜕𝐶

𝜕𝑡
 
−1

1
2𝜎²

 

For more clarity we introduce the following values: 

𝐶𝑡 = −
𝐾

2
𝜎²𝑣𝑟 

(16) 

𝑆𝐶𝑠 = 𝐾𝑣𝑥 (17) 

𝑆2𝐶𝑠𝑠 = 𝐾𝑣𝑥𝑥 − 𝑆𝐶𝑠 = 𝐾𝑣𝑥𝑥 − 𝐾𝑣𝑥 (18) 

Let’s recall the Black-Scholes equation: 

𝐶𝑡 +
1

2
 𝜎2𝑆2𝐶𝑠𝑠 + 𝑟𝑆𝐶𝑠 − 𝑟𝐶 = 0 

(19) 

We inject (16),(17)and (18) into (19) , Which gives us: 
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−
𝐾

2
 𝜎2𝑣𝜏 +

𝐾

2
 𝜎2(𝑣𝑥𝑥 − 𝑣𝑥) + 𝑟𝐾𝑣𝑥 − 𝑟𝐾𝑣 = 0 

By dividing by 
𝐸

2
𝜎2: 

−𝑣𝜏 + 𝑣𝑥𝑥 − 𝑣𝑥 + 𝐹𝑣𝑥 − 𝐹𝑣 = 0     𝑎𝑣𝑒𝑐 𝐹 =  
2𝑟

𝜎2
,  

Or using the initial notations: 

𝜕𝑣

𝜕𝜏
=  
𝜕²𝑣

𝜕𝑥²
+ (𝐹 − 1)

𝜕𝑣

𝜕𝑥
− 𝐹𝑣   𝑎𝑣𝑒𝑐   𝐹 =  

2𝑟

𝜎2
  

(20) 

We then have as initial condition (𝜏 = 0 , since the condition is at 𝑡 = 𝑇: 

𝑣(𝑥, 0) =
1

𝐾
𝐶(𝐾𝑒𝑥, 𝑇) =

1

𝐾
max(𝐾𝑒𝑥 − 𝐾, 0) = max(𝑒𝑥 − 1,0). 

 

To get an equation like the heat equation, we have to proceed to a second change of variables, 

let: 

𝑣(𝑥, 𝜏) = 𝑒𝛼𝑥+𝛽𝜏 𝑢(𝑥, 𝜏) 

We reinject all this in the equation (20) : 

𝑒𝛼𝑥+𝛽𝜏 (𝛽𝑢 +
𝜕𝑢

𝜕𝜏
) = 𝑒𝛼𝑥+𝛽𝜏 (𝛼2𝑢 + 2𝛼

𝜕𝑢

𝜕𝑥
+
𝜕2𝑢

𝜕𝑥2
+ (𝐹 − 1) (𝛼𝑢 +

𝜕𝑢

𝜕𝑥
) − 𝐹𝑢). 

                              𝛽𝑢 +
𝜕𝑢

𝜕𝜏
= 𝛼2𝑢 + 2𝛼

𝜕𝑢

𝜕𝑥
+
𝜕2𝑢

𝜕𝑥²
+ (𝐹 − 1) (𝛼𝑢 +

𝜕𝑢

𝜕𝑥
) − 𝐹𝑢.  

By regrouping the terms of the same derivatives: 

𝜕𝑢

𝜕𝜏
=
𝜕²𝑢

𝜕𝑥²
+ (𝛼2 + (𝐹 − 1)𝛼 − 𝐹 − 𝛽)𝑢 + (2𝛼 + 𝐹 − 1)

𝜕𝑢

𝜕𝑥
. 

To reduce to the case of the heat equation, we must eliminate the terms in 𝑢 𝑎𝑛𝑑 
𝜕𝑢

𝜕𝑥
, by solving 

the following system: 

 

{𝛽 = 𝛼
2 + (𝐹 − 1)𝛼 − 𝐹,

2𝛼 + 𝐹 − 1 = 0.
} 

⟺ 
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{
𝛼 = −

1

2
(𝐹 − 1)

𝛽 = −
1

4
(𝐹 + 1)²

} 

 

We then have:  

𝑣 = 𝑒−
1
2
(𝐹−1)𝑥−

1
4
(𝐹+1)2𝜏𝑢(𝑥, 𝜏). 

Where u verify: 

{

𝜕𝑢

𝜕𝜏
=
𝜕2𝑢

𝜕𝑥2
 , ∀𝑥 ∈ 𝑅 , ∀𝜏 > 0

𝑢(𝑥, 0) = 𝑢0(𝑥) = 𝑒
1
2
(𝐹−1)𝑥max(𝑒𝑥 − 1,0) = max (𝑒

1
2
(𝐹+1)𝑥 − 𝑒

1
2
(𝐹−1)𝑥, 0) .

} 

The solution is: 

𝑢(𝑥, 𝜏) =
1

2√𝜋𝜏
 ∫ 𝑢0(𝑠)𝑒

−
(𝑥−𝑠)2

4𝜏
𝑑𝑠.

+∞

−∞

 
(21) 

To evaluate the Option price, we will be using the equations (6) (7)(8). 

 

2.2 Volatility  

 

     Volatility estimation is essential in financial mathematics to calculate the price of an option. 

It measures the volatility of the price of a financial asset. The greater the volatility, the more 

unstable the asset, if the volatility is zero, we can know exactly the value of the asset in the 

future. [1] 

There are two methods of calculating volatility. 

2.2.1 Implicit volatility 

 

       Using observed prices 𝐶𝑡 of options and inverting the formula of Black-Scholes, we can 

find the parameter 𝜎. Here, in general, we do not have a single value of sigma, but a curve 

which depends on the strike K, it is the phenomenon of the “Volatility smile”. 
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2.2.2 Historical volatility  

       Using historical data of the underlying asset 𝑆𝑡 and statistical estimation methods for the 

mean and the variance, we deduce the parameter of volatility. 

 

2.2.3  Calculation of implicit volatility 

 

       The formula of implicit volatility is obtained according to the black-Scholes formula for a 

European call  

𝐶(𝑆, 𝑡) = 𝑆𝑁(𝑑1) − 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2) 

And                                                          𝜎 = √
𝑙𝑛(

𝐾

𝑆
)−𝑟(𝑇−𝑡)

(𝑇−𝑡)(𝐾−
1

2
)

 

We therefore have an expression of the volatility as un function of the other parameters. By 

knowing the previous values of the call, we deduce the volatility. We note that the implied 

volatility depends on the strike and the date of expiry, we therefore obtain a curve that has the 

shape of a smile, hence the “volatility smile” phenomenon. 

In practice, to calculate the implied volatility, we do not use this formula which is too 

complicated to set up, we use a numerical resolution. If we call 𝐶0 the value of a call at the 

initial time, to calculate the implied volatility, we have to solve: 

𝐶0 − 𝑆𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2) = 0 

2.2.4 Calculation of historical volatility  

 

     There are several formulas to calculate historical volatility. One of them consists of a 

standard deviation calculation based on the past values of the Call. 

Let 𝐶𝑖 denote the value of a European Call at the end of the 𝑖𝑡ℎ period, 𝐶 the average of these 

values between time 1 and n, we have: 
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𝜎𝑛 = √
∑ (𝐶𝑖 − 𝐶̅)
𝑛
𝑖=1

𝑛
       , 𝑤𝑖𝑡ℎ 𝐶̅ =

∑ 𝐶𝑖
𝑛
𝑖=1

𝑛
  

 

2.2.5 Plot of the obtained explicit solution  

 

 

Figure 2Pricing European Call using the explicit Method (in 2D and 3D) 

 

     The blue curves represent the value of the European Call Option at expiry date, the green 

ones half a year before, and the red ones one year before (when the contract is signed). 

[11] 

3 Numerical Techniques for solving the Black-Scholes equation 

 

        Numerical Techniques are the design and study of algorithms to obtain solutions to sets of 

equations from models from physics, biology, finance.... The models considered are composed 

of a set of equations for which we do not know how to determine explicit solutions. Therefore, 

we use some numerical methods to obtain an approximate solution, calculated using the 

computer. 
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Solving the Black-Scholes model of A European call option pricing, in higher dimensions, 

when we have more than a stock, requires one of those methods, to have an approximated 

solution. 

For a European Call with strike K, and expiry date T, we have the following Black-Scholes 

equation, in which we made the change of variable 𝜏 = 𝑇 − 𝑡 to reduce to a condition at 𝜏 = 0 . 

{−
𝜕𝐶

𝜕𝑡
(𝑆, 𝑡) + 𝑟𝑥

𝜕𝐶

𝜕𝑆
(𝑆, 𝑡) + 

𝜎2

2
𝑆2
𝜕2𝐶

𝜕𝑆2
 (𝑆, 𝑡) − 𝑟𝐶(𝑆, 𝑡) = 0 , ∀𝑡 ∈ [0, 𝑇]  , 𝑆 ∈ [0, 𝐿],

𝐶(𝑆, 0) = (𝑆 − 𝐾)+ = 𝑚𝑎𝑥(𝑆 − 𝐾, 0) , ∀𝑆 ∈ [0, 𝑅]

} 

(22) 

3.1 FINITE DIFFERENCES 

 

           In numerical analysis, an important application of finite differences is the numerical 

resolution of differential equations and partial differential equations: the idea is to replace the 

derivatives appearing in the equation by finite differences which approximate them. The various 

methods that result are called finite difference methods. Here we are going to use the Backward 

Euler method (or Implicit method) to solve our PDE. The Implicit method consists in seeking 

the approximate value at time 𝑡𝑛+1 with the following relation: 

𝑌𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1) 

Therefore, this method consists in taking the derivative at the end of the interval [𝑡𝑛, 𝑡𝑛+1] , 

instead of taking it at the beginning. The value 𝑦𝑛+1 is obtained by solving an equation. In the 

case of a differential system, the number of equations to be solved is equal to the numbers of 

unknown functions. [12] [13] [14] 

 

3.2 Chebyshev Pseudo-Spectral Method  

 

      The Chebyshev Pseudo-Spectral method have an important role in the numerical solution 

of differential equations. PS methods offers superior results for the solution of partial 

differential equations. [15] 
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4 Numerical experiments  

 

4.1 Backward Euler method  

       

           We use Backward Euler method, let: 𝐶𝑖
𝑚 = 𝐶(𝑆𝑖, 𝑡𝑚)    𝑤𝑖𝑡ℎ:  

𝑥𝑗 = 𝑗ℎ   𝑤𝑖𝑡ℎ 𝑗 = 0,… . ,𝑀  𝑎𝑛𝑑 ℎ =
𝑅

𝑀
  𝑠𝑝𝑎𝑐𝑒 𝑠𝑡𝑒𝑝 , 

  𝑡𝑛 = 𝑛𝑘 𝑤𝑖𝑡ℎ 𝑛 = 0,… . . , 𝑁  𝑎𝑛𝑑 𝑘 =
𝑇

𝑁
 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝, 

We obtain: 

−
𝐶𝑗
𝑛+1 − 𝐶𝑗

𝑛 

𝑘
+ 𝑟𝑥𝑗

𝐶𝑗+1
𝑛+1 − 𝐶𝑗−1

𝑛+1

2ℎ
+
𝜎2

2
𝑥2𝑗

𝐶𝑗+1
𝑛+1 − 2𝐶𝑗

𝑛+1 + 𝐶𝑗−1
𝑛+1

ℎ2
− 𝑟𝐶𝑗

𝑛+1 = 0. 

We also need a boundary condition for x=0 and x=R. 

For 𝑥 = 0 , we take 𝐶(0, 𝑡) = 0 =̇  𝑢𝛼 , 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑥 = 𝐿 , 𝑤𝑒 𝑡𝑎𝑘𝑒 𝐶(𝑅, 𝑡) = 𝐵𝑆(𝑅, 𝐸, 𝑇 −

𝑡, 𝑟; 𝑠𝑖𝑔𝑚𝑎) =̇  𝑢𝑏(𝑡) ,where BS is the function that permits to obtain the price of the call . 

Let 𝐶𝑇 = (𝐶1
𝑛+1, … . , 𝐶𝑀

𝑛+1)𝑡 , 𝐶0 = (𝐶1
𝑛, … . . , 𝐶𝑀

𝑛)𝑡  , we obtain the following matrix: 

𝐴𝐶𝑇 = 𝐶0 + 𝐵𝑛 

That gives the components of 𝐶𝑇 in function of those of 𝐶0  

Where   

𝐴

=

(

 
 
 
 
 
 

1 + k (
σx1
h
)
2

+ rk −
rkx1
2h

−
k

2
(
σx1
h
)
2

0

rkx1
2h

−
k

2
(
σx1
h
)
2

   1 + k (
σx2
h
)
2

+ rk −
rkx2
2h

−
k

2
(
σx1
h
)
2

⋮ ⋱ ⋱  

   
…                                            0
⋯                                                ⋮
 ⋱                                                  ⋮

   

 
                     ⋮      

                        0         
    
        ⋮                            0                     ⋱                     −

rkxM
2h

−
k

2
(
σxM−1
h

)
2

 

…                                        0        
rkxM
2h

−
k

2
(
σxM
h
)
2

                              1 + k (
σxM
h
)
2

+ rk)

 
 
 
 
 
 

 

 

[12] 
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And 𝐵𝑛 is a null vector, 𝐵𝑚 is not null and we have:   

𝐵(𝑀) = (−
𝑟𝑘𝑥𝑀
2ℎ

−
𝑘

2
(
𝜎𝑥𝑀
ℎ
)
2

)  𝑢𝑏 (𝑛𝑘) 

Solving the scheme at each time step requires to calculate the solution of the linear system   

𝐴𝐶𝑇 = 𝐶0 + 𝐵𝑛 

The approximation error of the time derivative being of order 1, and that of the second 

derivative in space of order 2, it generally follows that the implicit scheme of Euler is in 𝜗(𝛿𝜏 +

𝛿𝑥2). 

In numerical analysis, the stability of a numerical scheme essentially concerns the numerical 

behaviour which manifest itself when the steps of temporal and spatial discretization all tend 

towards 0.  

 

(a) Plot of the solution when t=T                              (b)Plot of the solution when 𝑡 ∈]0; 𝑇[ 

 

Figure 3 Graphical representation of the values of a European Call Option 
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(a) Euler implicit                                                                           (b) Explicit solution 

 

Figure 4 Comparison or results for a European Call where t=0 
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Figure 5 Both Euler Implicit and explicit solution in one figure 

 

 

The inputs are: 𝑟 = 0.0125 , 𝜎 = 0.2 , 𝐾 = 40 , 𝑇 = 1 , 𝑆 = 350 
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Figure 6 Convergence of Euler Implicit Scheme 

 

Figure 6 shows that the implicit Euler method has a linearly decreasing error as the number of 

time steps increases. When the number of time steps is multiplied by 10, the error is also 

multiplied by 10. We thus find theoretical result according to which the method using the 

implicit Euler in time. 

 

4.2 Spatial discretization using Chebyshev Pseudo-Spectral method  

 

       Pseudo-Spectral method to solve partial differential equations requires global basis 

functions to approach the solution function. The method does not immediately offer high-

accuracy quadrature solutions, but it can obtain high order numerical solutions when the latter 

is smooth. The basic functions used are Chebyshev polynomials, and Chebyshev collocation 

points for space discretisation. 

The rate of convergence of spectral methods for smooth functions is 𝜗(𝑁−𝑚), 𝑤𝑖𝑡ℎ 𝑚 ∈ 𝑅 , 

Where PS methods uses N collocation points, that are usually used to determine an interpolated 

polynomial of degree ≤ 𝑁. The higher the number of collocation points increases the higher 

order numerical solutions are obtained by using PS method. 

The Black-Scholes equation is a not a smooth function at the initial conditions, since the first 

derivative is not continuous at K. 
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We approach the solution by using N equidistant points, that are distributed with the density: 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ~
𝑁

𝜋√1 − 𝑥²
. 

Chebyshev points helps to choose any different types of boundary conditions. They 

are defined by: [15] [16] 

𝑥𝑗 = 𝑐𝑜𝑠 (
𝑗𝜋

𝑁
) , 𝑗 = 0,… . . , 𝑁. 

(23) 

The Chebyshev polynomials of the first kind are given by 

𝑇𝑛(𝑥) = 𝑐𝑜𝑠 𝑛𝜃 , 𝑥 = 𝑐𝑜𝑠 𝜃 , −1 ≤ 𝑥 ≤ 1,  𝑤ℎ𝑒𝑟𝑒  𝑛 = 0,1,2, …… ..   (24) 
 

(25) 

The first three polynomials are: 

{

𝑇0 = 1
𝑇1 = 𝑥

𝑇2 = 2𝑥
2 − 1

 

They are also orthogonal  

∫
𝑇𝑖(𝑥)𝑇𝑗(𝑥)

√1 − 𝑥²
𝑑𝑥

1

−1

= {

0,     𝑖 ≠ 𝑗
𝜋,      𝑖 = 𝑗 = 0
𝜋

2
,          𝑖 = 𝑗 ≠ 0

 

The orthogonality for discrete function values is given by: 

 

(26) 

∑𝑇𝑖(𝑥𝑘)𝑇𝑗(𝑥𝑘) = {

1

2
𝑀𝛿𝑖𝑗,      𝑖, 𝑗 ≠ 0        

   𝑀,      𝑖 = 𝑗 = 0 

𝑀

𝑘=1

           𝑖, 𝑗 ≤ 𝑀 

 

Since Chebyshev polynomials are defined in [−1,1] , and from the domain used in 

the problem (5) , we obtain:  

 

(27) 

𝑥 =
2𝑠

𝑆𝑚𝑎𝑥
− 1 

 

 

(28) 

Weierstrass approximation theorem shows that the continuous real-valued functions on a 

compact interval can be uniformly approximated by Chebyshev polynomials: 
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𝐹(𝑥, 𝑡) =∑𝑐𝑗(𝑡)𝑇𝑗(𝑥)

∞

𝑗=0

, 

Where: 

(29) 

𝑐𝑗 =< 𝐹, 𝑇 >=  ∫
𝐹(𝑥, 𝑡)𝑇𝑗(𝑥)

√1 − 𝑥²
 𝑑𝑥.

1

−1

 
(30) 

 

  𝐿𝑛 is introduced to be able to use(28) with Chebyshev polynomials, It contains the error term, 

and allows us to obtain: 

𝑃𝑛𝐹(𝑥, 𝑡) =∑�̃�𝑖(𝑡)𝑇𝑖(𝑥)

𝑁

𝑖=0

, 
(31) 

�̃�0(𝑡)  ≡
1

𝑀
∑𝐹(𝑥𝑘, 𝑡)

𝑀

𝑘=1

, 
(32) 

�̃�𝑖(𝑡)  ≡
2

𝑀
∑𝐹(𝑥𝑘, 𝑡)

𝑀

𝑘=1

 𝑇𝑖(𝑥𝑘),            𝑖 = 1,……… . . , 𝑁 

(33) 

𝑥𝑘 = 𝑐𝑜𝑠 (
𝜋 (𝑘−

1

2
)

𝑛
) ,                  𝑘 = 1,……… . , 𝑛   𝑀 ≥ 𝑁.       

 

(34) 

By inserting the coefficients �̃�𝑖 into equation (31) , and using orthogonality of Chebyshev 

polynomials we obtain the following expression: 

𝑃𝑁𝐹(𝑥, 𝑡) =  ∑𝑐𝑖(𝑡)𝑇𝑖(𝑥)

𝑁

𝑖=0

+ ∑∑ ∑ 𝑐𝑙(𝑡)𝑇𝑙(𝑥𝑘)𝑇𝑖(𝑥𝑘)𝑇𝑖(𝑥)

∞

𝑙=𝑁+1

.

𝑀

𝑘=1

𝑁

𝑖=0

 

(35) 

Therefore, we deduce the coefficients 𝑐𝑖(0) , and the initial error will be: 

휀 = ‖𝐹(𝑥𝑘, 0) − 𝑃𝑁𝐹(𝑥𝑘, 0)‖ 

= ‖𝐹(𝑥𝑘, 0) −∑𝑐𝑗(0)

𝑁

𝑗=0

𝑇𝑗(𝑥𝑘)‖

+ ‖∑∑ ∑ 𝑐𝑙(𝑡)𝑇𝑙(𝑥𝑘)𝑇𝑖(𝑥𝑘)𝑇𝑖(𝑥)

∞

𝑙=𝑁+1

‖,    i, k, = 1, … . , N

𝑀

𝑘=1

𝑁

𝑖=0
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     This figure shows the difference between the exact and the approximate solution, 

approximated by using Chebyshev Pseudo-Spectral method, this method seems to be more 

accurate. 

 

4.3 Comparison between Euler Implicit and Chebyshev Pseudo-Spectral method   

 

     To compare between the two numerical methods, FD AND PS, we compute the error in 

Euler Implicit that takes the form of 𝑒𝑟𝑟𝐸(𝑁) =  
1

𝑁
=

1

𝑁²
 ,and Chebyshev Pseudo-Spectral that 

takes the form of 𝑒𝑟𝑟𝐶(𝑁) = 𝑒
−𝛼𝑁 and compare between them, we obtain the following   

figures, after running a MATLAB program. 

 

Figure 7 Analytic solution and Chebyshev PS approximation 
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Figure 8 Analytic solution compared to Euler Implicit and Chebyshev PS approximations 

 

     This figure shows how Chebyshev Pseudo-Spectral is more accurate than the Euler Implicit, 

the curve is almost identical with the curve of the analytic solution (the Blue one), we barely 

can see it, unlike the curve of the Euler Implicit. 
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Figure 9 Number of collocation points used here for Euler Implicit N=40, and for 

Chebyshev PS ,N=20, There’s a remarquable difference between both errors . 
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Figure 10 the number of collocation points used are 1000 for Euler Implicit, and 200 for 

Chebyshev PS 
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4.4   Discussion  

 

      This Numerical experiments shows that , in higher dimensions numerical methods need to 

be used to solve a nonlinear PDE .Solving the Black-Scholes equation , by using the Euler 

Implicit and Chebyshev Pseudo-Spectral methods , we notice that the PDE solution can be 

approximated much more accurately by Chebyshev PS  than by Euler Implicit, to obtain almost 

the same error in both method as shown in Figure 10 the number of collocation points used are 

1000 for Euler Implicit, and 200 for Chebyshev PS , we had to set N to 1000 in Euler Implicit 

and only to 200 in Chebyshev PS.   

 

 

 

Figure 11 the number of collocation points used is 200 for both methods 
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5 Conclusion  

 

           The Black-Scholes model is one of the most important model in modern financial theory 

.It is used for the valuation of stock options ,however , the analytical solution of the Black-

Scholes PDE can be obtained only in one dimension, in higher dimensions we need to use 

numerical methods .Therefore , the purpose of this work was to present the mathematical 

approach of discretization of the Black-Scholes model for European Call option pricing by 

reducing it to the heat equation, using both  Chebyshev Pseudo-Spectral and Euler Implicit 

methods , and to implement them. The comparisons carried out by simulation have shown that 

the number of points in space and the time step have an influence on the accuracy of both 

methods. The accuracy of the Chebyshev Pseudo-Spectral method approximation is very 

sensitive to the location in the interface. The study also made it possible to further strengthen 

our knowledge in this field. 

     The Chebyshev Pseudo-Spectral method is highly accurate for even small values of N, it is 

a global and often preferred for high-order accuracy, but also, difficult to program. Unlike Euler 

Implicit method, which is easier to program, however the method is local and we need bigger 

values of N to obtain a higher accuracy.    [7] [11] [12] [15] 
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