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Abstract

Nowadays, the detection of fraudulent activities within the banking sector has become a
critical concern for financial institutions. The rise of electronic transactions and the escalating
complexity of techniques employed by financial criminals show the great importance of early and
precise fraudulent bank accounts identification. This is essential for maintaining the integrity of
the financial system.

Therefore, this Master’s Thesis will involve working in a dataset designed to simulate the kind
of information typically possessed by a banking institution. The main intention is to check out
the dataset in search for characteristics that make a transaction or an account holder suspicious
of fraud. To accomplish this, Data Mining and Machine Learning techniques will be used for an
exhaustive examination of the dataset, as well as applying advanced classification algorithms. These
algorithms will play a pivotal role in effectively distinguishing between transactions that ultimately
prove to be fraudulent and those that are legitimate, posing no risk to the financial institution.

Success in this attempt will grant benefits not only for the specific banking institution in
question but will also contribute significantly to fortifying the financial system. It will enhance the
ability to detect and prevent fraudulent activities in an environment that is becoming progressively
more digital and complex.

JEL Classification C38, C45, E51, G21
Keywords Machine Learning, Supervised Learning, SMOTE, Logistic Regression, Decision

Tree, Neural Networks



Resumen

En la era digital en la que nos encontramos, la detección de actividades fraudulentas en el
ámbito bancario se ha convertido en una preocupación de suma importancia para las instituciones
financieras. Esto se debe a la amplia expansión de las transacciones electrónicas y a la creciente
sofisticación de los métodos utilizados por los delincuentes financieros. La capacidad de identificar
de manera temprana y precisa cuentas bancarias fraudulentas se ha vuelto esencial para preservar
la integridad y la confianza en el sistema financiero.

Por lo tanto, en este Trabajo de Fin de Máster, se abordará el análisis de un conjunto de
datos que simula el tipo de información que podŕıa poseer una entidad bancaria. El objetivo
principal es identificar las caracteŕısticas que hacen que una transacción o el titular de una cuenta
se vuelvan sospechosos de estar involucrados en actividades fraudulentas. Para llevar a cabo esta
tarea, se aplicarán técnicas de Mineŕıa de Datos y Aprendizaje Automático, las cuales permitirán
explorar exhaustivamente el conjunto de datos y utilizar algoritmos de clasificación avanzados.
Estos algoritmos serán cruciales para diferenciar de manera efectiva las transacciones que resultan
ser fraudulentas de aquellas que son leǵıtimas y no representan un riesgo para la institución financiera.

El éxito en este ejercicio no solo beneficiará a la entidad bancaria en cuestión, sino que también
contribuirá al fortalecimiento del sistema financiero en su conjunto, al aumentar la capacidad de
detección y prevención de actividades fraudulentas en un entorno cada vez más digital y complejo.
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1 Introduction

In the last few decades, the most significant changes that humans have experienced have been thanks
to (or caused by) technology and its advancements. These advancements allow us to approach
problems from a different perspective that could not be addressed before, improve everyday life
situations, or simplify the search for solutions to some problems. Precisely, in recent years, the
technology that has brought about a major change in the present day is Artificial Intelligence (AI)
and Machine Learning as part of it.

Machine Learning is the study of statistical models and algorithms used to enhance the
performance of certain programs by learning through experience. These algorithms are created
from data, but they go beyond that by learning which mistakes not to repeat and what successes
to learn from [27] [18].

This intelligence needed to solve problems inherent in datasets is constantly evolving, and over
time it has become evident that an increasing number of real-world problems can be addressed
through AI.

These algorithms aim to learn the relationships within data that humans may not necessarily
perceive. This is a significant advantage, as these analytical models used to require prior knowledge
of these relationships and procedures before working with the data. By now having systems that
can freely search for these aspects, we save time and reduce errors in their predictions and studies[2].

Depending on the type of problem to be solved and the dataset itself, different learning
techniques are employed [21] [3]:

• Supervised Learning: The algorithm generates a function that maps inputs to desired outputs
(labeled dataset), which helps the algorithm to learn and establish relationships between
inputs and outputs. It works for both regression and classification tasks.

• Unsupervised Learning: Unsupervised Learning is used when the dataset lacks corresponding
output labels. Algorithms in this category seek to model and analyze the inherent characteristics
of instances to gain a deeper understanding.

• Reinforcement Learning: The algorithm is rewarded or penalized while it is actively working.
The primary goal is to maximize the accumulative reward over time.

• Semi-Supervised Learning: Semi-Supervised Learning combines the advantages of both
Supervised and Unsupervised Learning. In this approach, a portion of the dataset has
known output labels, while a larger portion does not.

There are many other techniques that can be applied to algorithms, such as Transfer Learning,
Self-taught Learning, Active Learning or Targeted Learning, but the ones described above are the
most popular and used.
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Figure 1: Machine Learning Techniques

1.1 Context

Detecting fraudulent requests and transactions in the banking world represents a problem of great
importance. As technology advances and is increasingly used to our advantage, there are those who
manage to find new ways to fool banking systems and their users. Fraud does not only result in
financial losses for the banking institution and its clients but also destroys the trust in the financial
sector as a whole.

Fortunately, advancements in artificial intelligence and machine learning empower us to analyze
vast amounts of data, enabling the detection of patterns in these fraudulent transactions (or
transaction requests).

1.2 Goals

The goals of this Master’s Thesis are to achieve the proper preparation and treatment of the data
to identify the most effective Machine Learning technique for addressing and describing the issue of
bank fraud at hand.

Additionally, we will look for a predictive model that can accurately determine the value of
the response attribute by using the predictor attributes considered within the dataset to achieve
the highest possible level of accuracy.
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2 Description of the Data

The dataset under study was published in NeurlPS 2022 and consists of a collection of databases
that simulate realistic information a bank might have about its bank accounts and transactions
[16].

The offered datasets include:

• Base: This dataset aims to represent the original database of a bank as accurately as possible.
This is the dataset that will be studied in this Master’s Thesis.

• Variant I: Similar to the base dataset but exhibits a higher group size disparity than base
dataset.

• Variant II: Unlike the base dataset, this one has a higher prevalence of disparity.

• Variant III: This dataset features greater separability for one of the groups.

• Variant IV: In this dataset, the specified training set has a higher prevalence of disparity.

• Variant V: Similar to the previous one, the specified training set has greater class separability.

The dataset comprises one million instances with 32 attributes and two classes.

The information acquired for each instance is:

• fraud bool : Binary attribute. It is marked as 1 if the bank account is fraudulent, and 0
otherwise.

• income: Annual salary of the person who owns the bank account, measured in quantiles.

• name email similarity : Similarity between the name of the account holder and their email.

• prev address months count : Number of months the email associated with the account was
different from the current one.

• current address months count : Number of months the current email address has been
registered.

• customer age: Account owner’s age, measured in decades.

• days since request : Number of days since the last request was made.

• intended balcon account : Initial amount of money transferred.

• payment type: Payment type, with five possible options (AA, EB, AC, AD, AE).

• zip count 4w : Number of requests made in the last 4 weeks with the same postal code.

• velocity 6h: Average number of requests per hour in the last 6 hours.

• velocity 24h: Average number of requests per hour in the last 24 hours.
3



• velocity 4w : Average number of requests per hour in the last 4 weeks.

• bank branch count 8w : Total number of requests at the bank branch where the instance’s
request is made in the last 8 weeks.

• date of birth distinct emails 4w : Number of email addresses with the same date of birth that
have requested in the last 4 weeks.

• employment status : Employment status of the applicant, with 7 possible options (CA, CB,
CC, CD, CE, CF, CG).

• credit risk score: Internal score of application risk.

• email is free: Binary attribute. It is marked as 1 if the email domain is public, and 0
otherwise.

• housing status: Residential status of the applicant, with 7 possible options (BA, BB, BC,
BD, BE, BF, BG).

• phone home valid : Binary attribute. It indicates 1 if the associated home phone number is
valid, and 0 otherwise.

• phone mobile valid : Binary attribute. It indicates 1 if the associated mobile phone number is
valid, and 0 otherwise.

• bank months count : Number of months of the applicant’s previous account (if applicable).

• has other cards : Binary attribute. It is marked as 1 if the applicant has more cards from the
same bank, and 0 otherwise.

• proposed credit limit : Credit limit proposed by the applicant.

• foreign request : Binary attribute. It is set to 1 if the request is of foreign origin, and 0
otherwise.

• source: Online source of the request, taking two possible values: INTERNET or APP.

• session length in minutes : Length of user session in banking website in minutes.

• device os: Operative system of device that made request. Possible values are: Windows,
Macintosh, Linux, X11, or other.

• keep alive session: Binary attribute. It indicates 1 if the user accepted or declined (0) to
keep the session open on the website when asked.

• device distinct emails 8w : Number of distinct emails in banking website from the used device
in last 8 weeks.

• device fraud count Number of fraudulent applications with used device.

• month: Month in which the request was made.

4



2.1 Descriptive study

Out of the 32 attributes in this dataset, 19 of them are numerical, and 13 are categorical.

Numerical Attributes Categorical Attributes
1 income 0 fraud bool
2 name email similarity 8 payment type
3 prev address months count 15 employment status
4 current address months count 17 email is free
5 customer age 18 housing status
6 days since request 19 phone home valid
7 intended balcon amount 20 phone mobile valid
9 zip count 4w 22 has other cards
10 velocity 6h 24 foreign request
11 velocity 24h 25 source
12 velocity 4w 27 device os
13 bank branch count 8w 28 keep alive session
14 date of birth distinct emails 4w 31 month
16 credit risk score
21 bank months count
23 proposed credit limit
26 session length in minutes
29 device distinct emails 8w
30 device fraud count

Table 1: Data types of the attributes

A distinctive feature of this database, and one that will need to be addressed later, is the
unmistakable class imbalance, as illustrated in Figure 2. Class 0 (non-fraudulent transactions)
comprises 988971 instances out of 1000000, while for class 1, representing fraudulent instances,
there are only 11029.
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Figure 2: Instances distribution for both classes. Self-generated image.

This lack of representation in class 1 poses a problem when working with this dataset. Ideally,
the classes should have similar distributions. To address this, the oversampling technique known as
SMOTE (Synthetic Minority Over-sampling TEchnique) will be applied.

Before applying data treatment techniques, two attributes will be removed from the dataset as
they do not provide necessary information for this study:

• device fraud count : This attribute is being removed because it only takes the value 0,
indicating that none of the instances in the dataset were made with a device that had
previously performed any fraudulent actions.

• month: This attribute was included in the dataset for studying time series, which is not
considered in this Master’s Thesis.
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Once these two attributes are removed, the heatmap represented in Figure 3 shows us the
following:

Figure 3: Heatmap for the attributes. Self-generated image

There are no attributes with concerning correlation, although it’s worth noting the apparent
(and logical) correlation among the attributes zip count 4w, velocity 6h, velocity 24h and velocity 4w,
as they all refer to similar measurements.
Another pair of attributes that exhibit a significant correlation are credit risk score and
proposed credit limit, with a correlation value of 0.61.
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3 Theoretical Framework

3.1 Preprocessing Techniques

3.1.1 Class rebalancing

Most classification algorithms assume that classes are balanced when, in real life (and in many
existing datasets), this is not the case. To ensure that our algorithm understands the characteristics
that differentiate each class as accurately as possible, it needs an adequate number of examples for
each class. This is why class rebalancing is useful.

There are several methods to improve the performance of a classifier when facing imbalanced
data, and in this Master’s Thesis this problem will be addressed using the oversampling technique
known as SMOTE (Synthetic Minority Over-sampling TEchnique):
SMOTE works by taking instances that are close in feature space and creating a new instance that
is also close within the same class. To clarify, the process works as follows: An instance from the
minority class is chosen, and then k nearest neighbors (belonging to the same class) are identified
within this feature space. The new instance is created by combining the initial instance with one of
the k nearest neighbors that are selected [13].
One drawback of this technique is that it creates new instances without considering the majority
class, which could potentially introduce ambiguous instances into the dataset[7].

To implement this technique in Python programming language, we will use the imbalanced-learn
library. Particularly, we will use the function imblearn.over sampling.SMOTENC, designed for
addressing imbalanced data when predictor attributes consist of both numerical and categorical
features. This is in contrast to the original imblearn.over sampling.SMOTE function, which does
not handle mixed data types.

This function includes the following parameters [17]:

• categorical features : List of the names of the attributes (or their positions in the DataFrame)
that are categorical.

• categorical encoder : By default, this parameter is deactivated, but if enabled, it applies
OneHotEncoder to the categorical attributes. In the case of this Master’s Thesis, this
procedure has been applied beforehand.

• random state: Seed used by the random number generator.

• k neighbors : Number of neighbors to use. Its value by default is 5.

3.1.2 Data Reduction

The algorithms employed in this Master’s Thesis are capable of extracting information from very
large datasets, whether due to their numerous attributes or instances to be studied. However,
datasets with a significant number of instances, as is the case here (1 million), increase the complexity
and execution time of the study.
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To address this challenge, this Master’s Thesis has selected 30% of the total instances as a
solution.

3.2 Machine Learning Algorithms

Machine Learning employs various algorithms to solve problems with datasets. It is a well-known
fact that there is no one-size-fits-all algorithm that is the best for solving all problems. Choosing
the correct algorithm depends on the specific problem at hand, the attributes and their types, and
the type of model desired to describe it [18].

In this study, we will compare Machine Learning algorithms based on Supervised Learning.
Supervised Learning algorithms require external guidance, comparing the algorithm’s output for an
instance to the actual output, in order for the algorithm to continue learning. The dataset will be
split into training and test sets [18]. Supervision within the training set is crucial for training the
algorithm to make accurate predictions by evaluating its output against expected results. Then,
the trained algorithm is applied to the test set, where we can extract evaluation metrics [6].

3.2.1 Logistic Regression Algorithm

Logistic Regression models are statistical algorithms used to study the relationship between a
binary dependent attribute (taking on the values 0 and 1) and independent attributes.

There are two main reasons for choosing a logistic regression model: the first is the ease
with which parameter estimates can be interpreted as odds ratios, and the second pertains to
the calculation of predicted values as probabilities of the outcome being 1 in the model’s predictions.

• Odd ratio
Odds ratio are defined as the measure of association between an independent attribute and
the dependent attribute, explaining the influence of the relationship between them. This is
often estimated by the ratio of the number of times that the event of interest occurs to the
number of times that it does not [5]. This value ranges from 0 to infinite. If its value is 1, it
means that there is no relationship between the attributes (i.e., one attribute’s category does
not affect the other). If the odds ratio is less than 1, the relationship is negative, and if it is
greater than 1, it is positive.

In Logistic Regression, odds ratio are employed to assess how independent attributes influence
the dependent attribute. These ratios serve as the parameters used to analyze attributes
within this algorithm.
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Consider a table that represents, with columns, the events of an independent attribute, and
with rows, the events of the response attribute categorized accordingly [12]:

Independient Attribute
0 1 Total

0 a b a+b
Dependent Attribute 1 c d c+d

Total a+c b+d a+b+c+d

Table 2: Contingency table for odds ratio.

Odds ratio can be calculated and interpreted as follows:
Considering the probability of the dependent attribute taking the value 0 when the independent

attribute is also 0:
a

a+c
c

a+c
= a

c
.

And if we understand the probability of the dependent attribute taking the value 0 when the

independent attribute is 1 as:
b

b+d
c

b+d
= b

d
.

Therefore, the value of the odds ratio concerning the studied independent attribute would be:

OR =
a
c
b
d

=
a ∗ d
b ∗ c

(1)

It would be interpreted as follows:
If the odds ratio is less than 1, individuals with a value of 0 in the studied independent
attribute are less likely to have the dependent attribute take on the value 0. But when we
invert this value (OR−1), it implies that instances with a value of 1 in their independent
attribute are bc

ad
times more likely to have the dependent attribute take on the value 0. [25]

An alternative approach to compute this odds ratio, which will be employed in this Master’s
Thesis, involves determining the exponential of the coefficients (also known as logits) provided
by the model’s regression in Python (in this case). Further elaboration on this will be provided
later in the document.

3.2.2 Decision Tree-based Algorithm

Decision trees represent graphs where nodes nodes serve as filters that an instance may or may not
meet. Depending on whether it satisfies these conditions or not, the instance will be classified in
one way or another as it progresses towards the tree’s terminal nodes [18].

Decision trees are one of the most powerful algorithms and are used in various fields such as
machine learning, image processing, and pattern recognition [8]. Due to their ease of interpretation
and their versatility in addressing a wide array of distinct problems, decision trees are extensively
employed across various fields today [20].
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Figure 4: General Structure of a Decision Tree

There are different types of decision tree algorithms, including CART (Classification and
Regression Tree), CHAID (Chi-squared Automatic Interaction Detector), QUEST (Quick, Unbiased,
and Efficient Statistical Tree), CTREE (Conditional Inference Trees), ID3 (Iterative Dichotomizer
Version 3), and its successor, C4.5 [8] [24].

These algorithms, primarily based on the Hunt algorithm [23], rely on primarily two steps:
The first step states that if, within a node, all instances belong to the same class, that node should
not be split and becomes a terminal node. The second step indicates that if there are instances
with different classes, one of the variables should be selected to split the remaining instances in the
node into subsets that more accurately differentiate between the classes.

The selection of the mentioned variable can be done using the Gini Index or Entropy [22]:

• Gini Index [24]

The Gini Index measures the purity of a node. It is the probability of selecting two instances
from a node and having them belong to different classes. Therefore, a higher Gini Index
means lower purity. Hence, the attribute with the lowest Gini Index should be chosen. The
Gini Index is defined as follows:

GINI = 1−
n∑

i=1

(Pi)
2 (2)

where Pi represents the probability that an instance belongs to Class i and n is the number
of instances.
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• Entropy
Entropy measures the level of disorder in a system, and its formula is as follows:

H = −
n∑

i=1

Pi ∗ log2(Pi) (3)

This way, if a node is pure (all its instances belong to the same class), the probability of
belonging to Class i (Pi) equals 1, resulting in an entropy value of 0.
When choosing a variable, both its Gini Index and Entropy value should ideally be 0.

3.2.3 Neural Network Algorithm

Deep Learning is a subset of Machine Learning that relies on Artificial Neural Networks. They
comprise multiple layers, each containing a different number of neurons, tailored to the complexity
and appropriate structure for the specific problem.

Artificial Neural Networks (ANNs) aim to replicate the learning process observed in the human
brain, where knowledge is acquired through experience and the extraction of generic patterns from
data. These networks mimic the neural structure of the human brain.

The structure of an ANN is as follows[11]:

• Input layer: This layer receives data directly from external sources.

• Hidden Layer(s): These layers do not have direct connections to the external environment
and may include multiple levels.

• Output Layer: The output layer returns the desired information after making predictions. In
regression tasks, it usually contains a single neuron, while in classification tasks, there will be
as many neurons as there are distinct classes.

Figure 5: General Structure of a Neural Network
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Each of these layers consists of units that transform the input data into information that the
next layer needs to perform its assigned task. This structured approach allows the machine to learn
during the data processing phase [4].

Figure 6: A closer look inside the Neural Network. [11]

Unlike conventional algorithms, ANN exhibit higher efficiency in self-training scenarios where
the relationships between attributes are non-linear or subject to change over time.
The ability of ANNs to explore all these relationships makes it easier for users to quickly create
models that could have been previously complex or even incomprehensible using other methods
[15].

This is also a disadvantage compared to traditional algorithms because the process that a
Neural Network performs may be less explainable. It will be more difficult to understand which
variables are the most important or the exact steps it follows. [1]
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3.3 Evaluation Metrics

Evaluation metrics will be used to determine which of the models being worked on is more accurate
in its prediction [9]. Depending on the type of problem, it will be more convenient to use one set
of metrics over the other. These metrics are applied to the results obtained when applying the
pre-trained algorithm to the test dataset.
Before explaining the metrics used in this Master’s Thesis, it is important to first understand what
a Confusion Matrix is:

• Confusion matrix

The confusion matrix is a kxk table that compares the predicted classes in its rows and the actual
classes in its columns. In this Master’s Thesis, k=2. It is represented as follows:

Confusion Matrix
Real values

Positive Class (1) Negative Class (0)

Predicted values
Positive Class (1) True positive (TP) False positive (FP)
Negative Class (0) False negative (FN) True negative (TN)

Table 3: Confusion Matrix for Binary Classification

From Table 3, which compares the obtained results with the actual data in the dataset, we
obtain the following metrics [14]:

• Accuracy :
This metric computes the percentage of instances that are accurately classified. However,
it has a drawback when dealing with datasets having imbalanced classes, as it might not
adequately account for the minority class, as one would anticipate.
Its formula is:

TP + TN

TP + FP + TN + FN
(4)

• Sensitivity :
It represents the fraction of actual positive values that have been correctly classified. Its
formula is as follows:

TP

TP + FP
(5)

• Specificity :
This metric represents the fraction of actual negative values that have been correctly classified:

TN

TN + FN
(6)

• Precision:
This validation metric is used to calculate the true positive predictions for the positive class.
Its formula is as follows:

TP

TP + FP
(7)
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• Recall :
The recall metric is used to indicate the fraction of true positives among all the observations
predicted as positive. Its mathematical expression is:

TP

TP + FN
(8)

• F1-score:
This measure represents the consensus between precision and recall. A higher F1-score
indicates better prediction performance. Its formula is as follows:

2 ∗ P ∗R
P +R

(9)

where P represents Precision and R represents Recall (previously calculated).

• ROC Curve (Receiver Operating Characteristic):
ROC curve is a performance measurement for classification problem at various thresholds
settings [19]. If we graphically represent the different levels of sensitivity and specificity of
a predictive classification algorithm, we obtain a curve that illustrates how the algorithm
performs in terms of precision. This curve is commonly referred to as the ROC Curve and
also offers insights into the trade-offs between True Positives (TP) and False Positives (FP)
rates [26].

These curves are graphical representations that illustrate how sensitivity changes concerning
false positives (which are essentially the complementary of specificity) at different cut-off
points. These representations are crucial for determining the most appropriate cutoff point in
a test, evaluating its overall performance, and comparing the discriminative ability of two or
more algorithmic tests.

Figure 7: ROC Curve
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• AUC (Area Under Curve):
It is the performance metric associated with the ROC Curve. It can be interpreted as the
expected true positive rate and is calculated as follows:
If we define the function F1(t) to represent the false positive rate at threshold t on the x-axis,
and the function F0(t) to represent the true positive rate at threshold t on the y-axis, with
both functions monotonically non-decreasing as the threshold value t increases, then the Area
Under the Curve (AUC) is defined as [10]:∫ 1

0

F0(s)dF1(s) =

∫ ∞

−∞
F0(s)f1(s)ds (10)
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4 Experimentation

The experimentation was carried out using the following computer: HP 11th Gen Intel(R) Core(TM)
i7 2.80GHz 16.0GB RAM.

The programming language used was Python, through the open-source web application called
Jupyter Notebook, with the following versions of the packages:

Package Version
IPython 7.31.1
ipykernel 6.15.2
ipywidgets 7.6.5

jupyter client 7.3.4
jupyter core 4.11.1
jupyter server 1.18.1
jupyterlab 3.4.4
nbclient 0.5.13
nbconvert 6.4.4
nbformat 5.5.0
notebook 6.4.12
qtconsole 5.2.2
traitlets 5.1.1

Table 4: Jupyter Notebook base packages versions

In this Master’s Thesis, the dataset contains one million instances. Since this number is very
high, to achieve the proposed objectives, we will select 30% of the data in a stratified manner for
both classes. Once the dataset is reduced, there will be 300000 instances, with 296701 belonging to
class 0 (non-fraudulent requests) and 3299 classified as fraudulent (class 1), as it can be seen in
Figure 8.

Once we have our dataset ready to work on, we perform the corresponding split into training
and test sets, respecting the 70% for the training set and 30% for the other set, using a stratified
cross-validation technique with a holdout method through the train test split function from the
sklearn library.

Next, we will apply the oversampling technique mentioned and explained earlier, known as
SMOTE, to the training dataset. Specifically, we will use the SMOTE-NC technique because we
have categorical attributes among the features. This technique is only applied to the training set
since it is important for the algorithms to learn as effectively as possible during the training phase
with both existing classes.
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Figure 8: Instances distribution for both classes after choosing 30% of total. Self-generated image

Before initiating classifier testing, two pivotal steps must be performed. Firstly, encoding
categorical attributes is essential to prevent potential biases in the model, as it could distort the
significance of certain attributes during prediction or classification. Secondly, attribute scaling
is crucial because some models are sensitive to feature scaling. Inadequate scaling can lead to
an imbalance in the impact of attributes with different numerical ranges, potentially resulting in
erroneous conclusions. Furthermore, this data preparation approach can enhance computational
efficiency by aiding models in achieving convergence more swiftly.

4.1 Algorithm Testing in Python

4.1.1 Logistic Regression

To apply the Logistic Regression algorithm in Python, we will use the sklearn library, particularly
the function LogisticRegression within the linear model submodule.
After using this function and training the algorithm with the fit function, predictions are generated,
and the resulting outcomes (coefficients and logits) are obtained using the commands model.coef and
np.exp(model.coef ), with np representing the abbreviation for the imported numpy library.

4.1.2 Decision Tree

To apply the Decision Tree algorithm in Python, the following functions have been used:
The function DecisionTreeClassifier from the library sklearn, with these precise parameters:

• criterion: Function to measure the quality of a split. By defult the function uses the Gini
Index, but in this Master’s Thesis the Entropy will be used.
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• max depth: Maximum depth of the tree. By default, the nodes will expand until all leaves
are pure.

• min samples leaf : Minimum number of samples required to be at a leaf node. Its value by
defult is 1.

Once the Decision Tree is created and trained, predictions will be made and the structure can
be obtained by using model.get depth() and model.get n leaves().

4.1.3 Neural Networks

To work with Neural Networks, the tensorflow library will be used, specifically the functions
Sequential and layers from the keras submodule. Its structure is as follows: with the Sequential
function, layers are grouped together, which will be defined using the layers function, forming the
structure of the Neural Network.

Within the layersfunction, for each of the dense layers of the Neural Network, the Dense
function is used with the following parameters:

• activation: Activation function applied to the output of one of the layers in the network. In
this case, the ReLU (Rectified Linear Unit) function is chosen.

• units : Number of neurons in the layer.

Another function employed, in addition to Dense, is the Dropout function. It is applied after specific
layers in the Neural Network. This function, with a certain probability, deactivates some neurons
within a layer during training for a particular instance. This approach helps mitigate overfitting on
the training dataset.

Figure 9: Representation of Dense and Dropout layering. Self-generated image

19



5 Results

5.1 Logistic Regression

The following results were obtained after applying Logistic Regression:

Attribute Coeficient expcoef

income 0.8120 2.2524
name email similarity -1.638 0.1943

prev address months count -2.910 0.0544
current address months count 0.6339 1.8850

customer age 2.4497 11.585
days since request 0.1383 1.1484

intended balcon account -0.911 0.4020
payment type 0.7392 2.0942
zip count 4w 0.5929 1.8093
velocity 6h -0.000 0.9998
velocity 24h 0.4360 1.5466
velocity 4w 0.5870 1.7987

bank branch count 8w -0.296 0.7437
date of birth distinct emails 4w -2.766 0.0628

employment status -7.466 0.0005
credit risk score 1.0502 2.8583

email is free -0.205 0.8145
housing status -5.075 0.0062

phone home valid -3.045 0.0475
phone mobile valid -1.716 0.1797
bank months count 0.0593 1.0611
has other cards -3.779 0.0228

proposed credit limit -0.363 0.6950
foreign request -1.231 0.2919

source -4.930 0.0072
session length in minutes -0.572 0.5640

device os 2.7419 15.51
keep alive session -2.084 0.1244

device distinct emails 8w -4.483 0.0112

Table 5: Coefficients of the attributes used in the study

The values in the last column represent the increase in the likelihood of a request being
fraudulent as a particular variable increases by one unit. For instance, for every 10-year difference in
a customer’s age compared to another customer, the probability of fraud increases by 11.585 points.
The variables that have the greatest influence on this probability are device os, customer age,
credit risk score, income and payment type.
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5.1.1 Test Results

Results
Model

Accuracy 88.797

Confusion Matrix
79387 9623
459 531

Sensitivity 0.891
Specificity 0.536

AUC 0.830

Class 0
F1-Score 0.940
Precision 0.990
Recall 0.890

Class 1
F1-Score 0.100
Precision 0.050
Recall 0.540

Table 6: Logistic Regression Results

Based on these results, we can draw the following conclusions:
The model achieves a high accuracy rate, approaching 89%. However, it is important to note

that accuracy may not be the most suitable metric for imbalanced datasets, as it does not account
for the uneven distribution of classes. Examining the confusion matrix, we can see that class 0 is
predominantly classified correctly, while class 1 experiences a high number of misclassifications,
resulting in a low recall value of 0.54.

Therefore, with results like these, we can conclude that the Logistic Regression model does not
perform the desired function, as the focus should be on correctly classifying fraudulent instances
rather than non-fraudulent ones. It is worth noting the very low F1-Score and Precision values for
class 1, supporting the earlier observations.
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5.2 Decision Tree

To search for an appropriate classifier using Decision Trees, various structures will be proposed.
The following models will have different structural constraints imposed on them, such as restricting
the tree’s depth or setting a minimum number of instances required for a leaf node. These proposed
models are:

• First model:

For this initial model, no constraints were applied, and the function’s parameters were left at
their default values. The resulting tree has a depth of 40 levels and has 7774 leaf nodes.
The resulting model has the following feature importances:

Features Importance
income 0.0260

name email similarity 0.0171
prev address months count 0.0035

current address months count 0.0230
customer age 0.1389
days since request 0.0108

intended balcon account 0.0132
payment type 0.0090
zip count 4w 0.0156
velocity 6h 0.0204
velocity 24h 0.0171
velocity 4w 0.0201

bank branch count 8w 0.0112
date of birth distinct emails 4w 0.0088

employment status 0.0179
credit risk score 0.0091
email is free 0.0020

housing status 0.2731
phone home valid 0.0843
phone mobile valid 0.0159
bank months count 0.0136
has other cards 0.0474

proposed credit limit 0.0191
foreign request 0.0006

source 0.0
session length in minutes 0.0098

device os 0.0867
keep alive session 0.0828

device distinct emails 8w 0.0014

Table 7: Feature Importance for the First Decision Tree Model

The attributes that have been given the most importance are housing status, customer age,
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device os, phone home valid and keep alive . This means that these attributes are de ones
that explain the most (depending on their values) why an instance should be classified as
fraudulent or non-fraudulent.

• Second model:

For this model, the constraint of having at least 50 instances in each leaf node has been
imposed.
Here are the feature importances:

Feature Importance
income 0.0205

name email similarity 0.0120
prev address months count 0.0020

current address months count 0.0192
customer age 0.1547
days since request 0.0045

intended balcon account 0.0059
payment type 0.0062
zip count 4w 0.0083
velocity 6h 0.0116
velocity 24h 0.0076
velocity 4w 0.0125

bank branch count 8w 0.0053
date of birth distinct emails 4w 0.0033

employment status 0.0194
credit risk score 0.0029
email is free 0.0008

housing status 0.3108
phone home valid 0.0962
phone mobile valid 0.0170
bank months count 0.0094
has other cards 0.0542

proposed credit limit 0.0178
foreign request 0.0000

source 0.0000
session length in minutes 0.0043

device os 0.0978
keep alive session 0.0945

device distinct emails 8w 0.000

Table 8: Feature Importance for the Second Decision Tree Model

In this case, the model has a depth of 29 levels and 2144 leaf nodes, and the most
important features are: housing status, customer age, device os, phone home valid and
keep alive session.
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• Third model:

For this last case, a more restrictive model has been created with a maximum tree depth of
10 and a minimum of 1500 instances per leaf.
The results are:

Feature Importance
income 0.0081

name email similarity 0.0069
prev address months count 0.0008

current address months count 0.0158
customer age 0.1451
days since request 0.0010

intended balcon account 0.0006
payment type 0.0013
zip count 4w 0.0036
velocity 6h 0.0061
velocity 24h 0.0035
velocity 4w 0.0065

bank branch count 8w 0.0021
date of birth distinct emails 4w 0.0010

employment status 0.0190
credit risk score 0.0006
email is free 0.0008

housing status 0.3557
phone home valid 0.1101
phone mobile valid 0.0159
bank months count 0.0024
has other cards 0.0620

proposed credit limit 0.0090
foreign request 0.0000

source 0.0000
session length in minutes 0.0006

device os 0.1118
keep alive session 0.1083

device distinct emails 8w 0.0000

Table 9: Feature Importance for the Third Decision Tree Model

A tree with a depth of 10 and 540 leaf nodes was obtained in this case. The variables with the
highest importance for predicting other values were: housing status, customer age, device os,
phone home valid and keep alive session.
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5.2.1 Test Results

Results
First Model Second Model Third Model

Depth 40 29 10
Leaf Nodes 7774 2144 540
Accuracy 95.821 94.977 92.117

Confusion Matrix
86028 2982 85197 3813 82459 6551
779 211 707 283 543 447

Sensitivity 0.966 0.957 0.926
Specificity 0.213 0.285 0.451

AUC 0.589 0.767 0.805

Class 0
F1-Score 0.980 0.970 0.960
Precision 0.990 0.990 0.990
Recall 0.970 0.960 0.930

Class 1
F1-Score 0.100 0.110 0.110
Precision 0.070 0.070 0.060
Recall 0.210 0.290 0.450

Table 10: Decision Trees Test Results

The three models yield highly similar results, all achieving accuracy rates above 90%. However,
it is important to note that relying solely on accuracy may be misleading in this context. A closer
examination of the confusion matrix reveals that the first two models perform poorly in classifying
instances belonging to class 1, with the third model demonstrating a slight improvement, though
still classifying fewer than half of them correctly.

This limitation is further evident when assessing the specificity metric, as none of the three
models even reach a value of 0.5.

Comparing these models, the third one emerges as the preferred choice. It not only delivers
better results in predicting the positive class but also offers a simpler and more interpretable
structure due to its shallower depth.
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5.3 Neural Networks

For this algorithm, several structures have been proposed to evaluate how the results vary with
different designs. These structures are:

• 15-30-10-2 with dropout layers:
The network consists of a total of 4 layers, with 15, 30, 10, and 2 neurons in each, respectively.
Behind each layer of neurons, there will be a dropout layer with a probability of 0.1 for
deactivating a neuron. Its representation is:

• 15-30-10-2 without dropout layers:
Same structure of neuron layers as before, but they are not followed by a dropout layer. Its
graphical representation is:

• 30-15-2 with dropout layers:
This network has one fewer layer and now has 30, 15, and 2 neurons in each layer, respectively.
This network does have a dropout layer behind each neuron, with a probability of 0.1.

5.3.1 Test Results

The three models that have been explained and trained before have the following results on the
test set:

Neural Networks
First Model Second Model Third Model

Structure
15-30-10-2

(with dropout)
15-30-10-2

(w/o dropout)
30-15-2

(with dropout)
Accuracy 88.152 98.800 88.610

Confusion Matrix
78801 10218 88967 0 79162 9805
445 536 1033 0 447 586

Sensitivity 0.885 1.000 0.889
Specificity 0.546 0.000 0.567

AUC 0.715 0.500 0.728

Class 0
F1-Score 0.940 0.990 0.940
Precision 0.990 0.990 0.990
Recall 0.890 1.000 0.890

Class 1
F1-Score 0.090 0.000 0.100
Precision 0.050 0.000 0.060
Recall 0.550 0.000 0.530

Table 11: Neural Network Test Results

Table 11 reveals:
The results might appear very promising when considering the accuracy levels, especially the

second proposed model, which achieves nearly 100% accuracy in classifying instances. However, as
with the previous algorithms, the accuracy metric can be misleading about the actual performance
of the models. Despite the high accuracy values, other metrics demonstrate that the prediction
accuracy for fraudulent instances is only around 50%.
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In the second model, this prediction accuracy is extremely poor, as evident from the confusion
matrix, where the network has been trained to classify all instances as non-fraudulent, resulting in
a high overall accuracy rate. Clearly, the second model is not a viable choice.

The other two models yield similar results across all evaluation metrics, with comparable
structures, differing only in that the third model has one fewer hidden layer. The execution times
for these models were 827.006 seconds for the first model and 862.699 seconds for the second.

To conclude the Neural Network algorithm, the optimal model would be the third one, featuring
a sequence of layers consisting of 30, 15, and 2 neurons each, along with dropout layers with a
probability of 0.1 following each neuron layer.
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6 Conclusions

For this Master’s Thesis, two main goals have been proposed.

The first goal, which involves the proper preparation and data treatment, has been addressed
after conducting a descriptive study and applying data rebalancing and reduction techniques. The
result was a dataset that was split into training and testing sets, suitable for use in classification
algorithms. Oversampling techniques were applied to the training set to obtain a balanced dataset
that accurately represents both existing classes. A balanced dataset helps the algorithm train more
effectively and learn to differentiate the minority class more easily.

Once the dataset has been meticulously prepared to facilitate the application of the designated
algorithms, the goal becomes apparent: to discern which of the chosen classification algorithms
is the most effective in solving the problem while giving paramount importance to the accurate
classification of fraudulent instances.

Three distinct algorithms have been harnessed for this task: Logistic Regression, Decision
Trees, and Neural Networks. Notably, Logistic Regression and Decision Trees exhibit relatively low
execution times, typically measured in seconds.
Upon evaluating the selected algorithms and their respective configurations, it becomes evident that
they yield similar and praiseworthy results when it comes to classifying non-fraudulent instances.
Nevertheless, it’s worth reiterating that the pivotal concern lies in correctly identifying fraudulent
instances. Regrettably, these algorithms often falter in this regard, misclassifying them in
approximately half of the cases during testing.
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decisiones en un caso real de gestión de reclamaciones de una compañ́ıa de seguros. Master’s
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A Tables

payment type
Value Number of occurrences
AB 370554
AA 258249
AC 252071
AD 118837
AE 289

Table 12: Values that attribute payment type can take

employment status
Value Number of aparitions
CA 730252
CB 138288
CF 44034
CC 377758
CD 26522
CE 22693
CG 453

Table 13: Values that attribute employment status can take

housing status
Value Number of aparitions
BC 372143
BB 260965
BA 169675
BE 169135
BD 26161
BF 1669
BG 252

Table 14: Values that attribute housing status can take
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device os
Value Number of aparitions
other 342728
linux 332712

windows 263506
macintosh 53826

x11 7228

Table 15: Values that attribute device os can take

source
Value Number of aparitions

INTERNET 992952
APP 7048

Table 16: Values that attribute source can take
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B Programming code

1 """

2 Libraries

3 """

4

5 import pandas as pd

6 import numpy as np

7 import sklearn

8

9 from collections import Counter

10 from imblearn.over_sampling import SMOTENC

11 from sklearn.model_selection import train_test_split

12 import seaborn as sns

13 import matplotlib.pyplot as plt

14 from sklearn.preprocessing import LabelEncoder

15 import imblearn

16 from sklearn.tree import DecisionTreeClassifier , plot_tree

17 from sklearn import linear_model

18 import tensorflow as tf

19 from tensorflow import keras

20 from keras import layers

21 from sklearn.metrics import classification_report , confusion_matrix ,

22 accuracy_score

23 from sklearn.preprocessing import MinMaxScaler

24 from sklearn.metrics import roc_curve

25 from sklearn.metrics import roc_auc_score

26

27 ###############################################################################

28 #READ DATASET

29 ###############################################################################

30 data_raw = pd.read_csv ("Base.csv")

31 data_raw.head()

32

33 # Shuffling instancies

34 data_shu = sklearn.utils.shuffle(data_raw)

35 data_shu

36 data_shu.info()

37

38 #Distribution for each class

39 data_shu [" fraud_bool "]. value_counts () #Datos desbalanceados

40

41 #Deleting irrelevant features

42 datos_pre = data_shu.drop([’month ’, ’device_fraud_count ’], axis =1)

43

44 # Heatmap

45 plt.figure(figsize = (25, 20))

46 sns.heatmap(datos_pre.corr(),

47 annot = True ,

48 cmap = "Blues",

49 fmt = ".2f",

50 vmin = -1.00, vmax = 1.00)

51 plt.savefig (" mapa_calor_prev3 ")

52
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53

54 ###############################################################################

55 #INSTANCES REDUCTION

56 ###############################################################################

57 y_datos = datos_pre.iloc [:,0]

58 X_datos = datos_pre.iloc[:,range (1,30)]

59

60 X_b , X_g , y_b , y_g = train_test_split(X_datos , y_datos , test_size =0.30,

61 random_state =42)

62 (X_g.shape , y_g.shape)

63 y_g.value_counts ()

64

65 #X_g and y_g are the data we will work with

66

67

68

69 ###############################################################################

70 # TRAIN/TEST SPLIT

71 ###############################################################################

72 # Categorical features codification

73 categoricas = [" payment_type", "employment_status", "email_is_free",

74 "housing_status", "phone_home_valid", "phone_mobile_valid",

75 "has_other_cards", "foreign_request", "source", "device_os",

76 "keep_alive_session "]

77

78 encoder = LabelEncoder ()

79 for i in categoricas:

80 X_g[i] = encoder.fit_transform(X_g[i]. astype(’object ’))

81

82 X_g.describe ()

83

84 # 70/30 split

85 X_train , X_test , y_train , y_test = train_test_split(X_g , y_g , test_size =0.30 ,

86 random_state =42)

87

88 X_train.info()

89 X_train.shape

90

91 X_test.info()

92 X_test.shape

93

94 y_train.shape

95 y_test.shape

96

97 # Class distribution for training set

98 pentr = pd.concat ([X_train , y_train], axis = 1)

99 ax21 = sns.countplot(x=pentr[" fraud_bool "], palette ="Set3",

100 edgecolor = "black ")

101 for label in ax21.containers:

102 ax21.bar_label(label)

103 plt.savefig (" clase_entrv3 ")

104

105

106
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107

108 ###############################################################################

109 #SMOTE

110 ###############################################################################

111

112 print(’Original dataset shape %s’ % Counter(y_train))

113

114 sm = SMOTENC(categorical_features =[7 ,14 ,17 ,24 ,26]) #indico variables categoricas

115 X_train , y_train = sm.fit_resample(X_train , y_train)

116

117 print(’Resampled dataset shape %s’ % Counter(y_train)) #Now its balanced

118

119 y_train.shape

120 X_train.shape

121 data_smote = pd.concat ([X_train , y_train], axis = 1)

122 data_smote.describe ()

123

124

125 ax2 = sns.countplot(x=data_smote [" fraud_bool "], palette ="Set3",

126 edgecolor = "black ")

127 for label in ax2.containers:

128 ax2.bar_label(label)

129 plt.savefig (" clase_smotev3 ")

130

131 # Scaling attributes

132 escaladorX = MinMaxScaler ()

133 X_train = escaladorX.fit_transform(X_train.astype(’float64 ’))

134 X_test = escaladorX.transform(X_test.astype(’float64 ’))

135

136 ###############################################################################

137 # LOGISTIC REGRESSION

138 ###############################################################################

139 modelo1 = linear_model.LogisticRegression(max_iter =1000)

140 modelo1.fit(X_train ,y_train)

141

142 # Test predictions

143 y_pred = modelo1.predict(X_test)

144

145 modelo1.coef_ #coeficients

146 np.exp(modelo1.coef_)

147

148 #Resultados sobre el conjunto test

149 modelo1.score(X_test ,y_test)

150 confusion_matrix(y_test , y_pred)

151 print(classification_report(y_test , y_pred))

152

153 # ROC Curve

154 prob = modelo1.predict_proba(X_test)

155 probs = prob [:,1]

156 fpr , tpr , thresholds = roc_curve(y_test , probs)

157

158 def plot_roc_curve(fper , tper):

159 plt.plot(fper , tper , color=’red ’, label=’ROC ’)

160 plt.plot([0, 1], [0, 1], color=’green ’, linestyle=’--’)
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161 plt.xlabel(’False Positive Rate ’)

162 plt.ylabel(’True Positive Rate ’)

163 plt.title(’Receiver Operating Characteristic Curve ’)

164 plt.legend ()

165 plt.show()

166 plot_roc_curve(fpr , tpr)

167

168 auc = roc_auc_score(y_test , probs)

169 print(’AUC: %.2f’ % auc)

170

171

172 ###############################################################################

173 # DECISION TREES

174 ###############################################################################

175

176 ### FIRST MODEL

177 modelo2 = DecisionTreeClassifier(criterion = ’entropy ’, random_state = 0)

178 modelo2.fit(X_train , y_train)

179

180 print(f"Tree depth: {modelo2.get_depth ()}")

181 print(f"Leaf nodes: {modelo2.get_n_leaves ()}")

182

183

184 plot2 = plot_tree(

185 decision_tree = modelo2 ,

186 class_names = ’Fraudbool ’,

187 filled = True ,

188 impurity = False ,

189 fontsize = 10,

190 precision = 2)

191

192 # Test predictions

193 y_pred2 = modelo2.predict(X_test)

194

195 modelo2.score(X_test ,y_test)

196 confusion_matrix(y_test , y_pred2)

197 print(classification_report(y_test , y_pred2))

198

199 # ROC Curve

200 prob2 = modelo2.predict_proba(X_test)

201 probs2 = prob2 [:,1]

202 fpr2 , tpr2 , thresholds2 = roc_curve(y_test , probs2)

203

204 def plot_roc_curve(fper , tper):

205 plt.plot(fper , tper , color=’red ’, label=’ROC ’)

206 plt.plot([0, 1], [0, 1], color=’green ’, linestyle=’--’)

207 plt.xlabel(’False Positive Rate ’)

208 plt.ylabel(’True Positive Rate ’)

209 plt.title(’Receiver Operating Characteristic Curve ’)

210 plt.legend ()

211 plt.show()

212 plot_roc_curve(fpr2 , tpr2)

213

214 auc2 = roc_auc_score(y_test , probs2)
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215 print(’AUC: %.2f’ % auc2)

216

217

218

219 ### Segundo modelo (minimo 50 instancias por hoja final)

220 modelo21 = DecisionTreeClassifier(criterion = ’entropy ’, random_state = 0,

221 min_samples_leaf =50)

222 modelo21.fit(X_train , y_train)

223

224 print(f"Profundidad del rbol : {modelo21.get_depth ()}")

225 print(f" N m e r o de nodos terminales: {modelo21.get_n_leaves ()}")

226

227 #Representacion grafica del arbol

228 plot21 = plot_tree(

229 decision_tree = modelo21 ,

230 class_names = ’Fraudbool ’,

231 filled = True ,

232 impurity = False ,

233 fontsize = 10,

234 precision = 2)

235

236 #Predicciones sobre el conjunto test

237 y_pred21 = modelo21.predict(X_test)

238

239 modelo21.score(X_test ,y_test)

240 confusion_matrix(y_test , y_pred21)

241 print(classification_report(y_test , y_pred21))

242

243 # Curva ROC

244 prob21 = modelo21.predict_proba(X_test)

245 probs21 = prob21 [:,1]

246 fpr21 , tpr21 , thresholds21 = roc_curve(y_test , probs21)

247

248 def plot_roc_curve(fper , tper):

249 plt.plot(fper , tper , color=’red ’, label=’ROC ’)

250 plt.plot([0, 1], [0, 1], color=’green ’, linestyle=’--’)

251 plt.xlabel(’False Positive Rate ’)

252 plt.ylabel(’True Positive Rate ’)

253 plt.title(’Receiver Operating Characteristic Curve ’)

254 plt.legend ()

255 plt.show()

256 plot_roc_curve(fpr21 , tpr21)

257

258 auc21 = roc_auc_score(y_test , probs21)

259 print(’AUC: %.2f’ % auc21)

260

261

262

263

264 ### Tercer modelo (minimo 1500 instancias por hoja y maxima profundidad 10)

265 modelo22 = DecisionTreeClassifier(criterion = ’entropy ’, random_state = 0,

266 min_samples_leaf =50, max_depth =10)

267 modelo22.fit(X_train , y_train)

268
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269 print(f"Profundidad del rbol : {modelo22.get_depth ()}")

270 print(f" N m e r o de nodos terminales: {modelo22.get_n_leaves ()}")

271

272 #Representacion grafica del arbol

273 plot22 = plot_tree(

274 decision_tree = modelo22 ,

275 class_names = ’Fraudbool ’,

276 filled = True ,

277 impurity = False ,

278 fontsize = 10,

279 precision = 2)

280

281 #Predicciones sobre el conjunto test

282 y_pred22 = modelo22.predict(X_test)

283

284 modelo22.score(X_test ,y_test)

285 confusion_matrix(y_test , y_pred22)

286 print(classification_report(y_test , y_pred22))

287

288 # Curva ROC

289 prob22 = modelo22.predict_proba(X_test)

290 probs22 = prob22 [:,1]

291 fpr22 , tpr22 , thresholds22 = roc_curve(y_test , probs22)

292

293 def plot_roc_curve(fper , tper):

294 plt.plot(fper , tper , color=’red ’, label=’ROC ’)

295 plt.plot([0, 1], [0, 1], color=’green ’, linestyle=’--’)

296 plt.xlabel(’False Positive Rate ’)

297 plt.ylabel(’True Positive Rate ’)

298 plt.title(’Receiver Operating Characteristic Curve ’)

299 plt.legend ()

300 plt.show()

301 plot_roc_curve(fpr22 , tpr22)

302

303 auc22 = roc_auc_score(y_test , probs22)

304 print(’AUC: %.2f’ % auc22)

305

306

307 ###############################################################################

308 # REDES NEURONALES

309 ###############################################################################

310 #Hiperparamteros predefinidos

311 TAM_BATCH = 32

312 TAM_SHUFFLE = 1000

313 LOSS_FUNC = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

314 ACC_FUNC = tf.keras.metrics.SparseCategoricalAccuracy ()

315

316 EPOCAS = 50

317 L_RATE= 0.0001

318 OPTIM = tf.keras.optimizers.SGD(learning_rate=L_RATE)

319

320

321 ### FIRST MODEL

322 #Structure
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323 modelo1 = keras.Sequential ([

324 layers.Dense(15, activation = "relu"),

325 tf.keras.layers.Dropout (0.1),

326 layers.Dense(30, activation = "relu"),

327 tf.keras.layers.Dropout (0.1),

328 layers.Dense(10, activation = "relu"),

329 tf.keras.layers.Dropout (0.1),

330 layers.Dense(2, activation = "relu"),

331 ])

332

333 modelo1.compile(optimizer=tf.keras.optimizers.SGD(learning_rate =0.0001) ,

334 loss=LOSS_FUNC ,

335 metrics=ACC_FUNC)

336

337 history21 = modelo1.fit(X_train , y_train , epochs=EPOCAS)

338

339 #Accuracy and loss representation

340 plt.figure ()

341 plt.plot(history21.history[’loss ’], label=’Loss (training data)’)

342 plt.title(’Loss for Bank Fraud Dataset ’)

343 plt.ylabel(’CE ’)

344 plt.xlabel(’Epoch ’)

345 plt.legend(loc=" upper right")

346 plt.show()

347

348 # Plot history: Accuracy

349 plt.figure ()

350 plt.plot(history21.history[’sparse_categorical_accuracy ’],

351 label=’Accuracy (training data) ’)

352 plt.title(’accuracy for Bank Fraud Dataset ’)

353 plt.ylabel(’Accuracy ’)

354 plt.xlabel(’Epoch ’)

355 plt.legend(loc=" upper left")

356 plt.show()

357

358 #Test results

359 modelo1.evaluate(X_test , y_test)

360 y_pred31 = modelo1.predict(X_test)

361

362 print(’Accuracy: %.5f’ % accuracy_score(y_test , np.argmax(y_pred31 , axis=1 )))

363 print(classification_report(y_test , np.argmax(y_pred31 , axis=1 )))

364

365 confusion_matrix = confusion_matrix(y_test , np.argmax(y_pred31 , axis=1 ))

366 print(confusion_matrix)

367

368

369

370

371 ### SECOND MODEL

372 #Structure

373 modelo2 = keras.Sequential ([

374 layers.Dense(15, activation = "relu"),

375 layers.Dense(30, activation = "relu"),

376 layers.Dense(10, activation = "relu"),
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377 layers.Dense(2, activation = "relu"),

378 ])

379

380 modelo2.compile(optimizer=tf.keras.optimizers.SGD(learning_rate =0.0001) ,

381 loss=LOSS_FUNC ,

382 metrics=ACC_FUNC)

383

384 history22 = modelo1.fit(X_train , y_train , epochs=EPOCAS)

385

386 #Accuracy and loss representation

387 plt.figure ()

388 plt.plot(history22.history[’loss ’], label=’Loss (training data)’)

389 plt.title(’Loss for Bank Fraud Dataset ’)

390 plt.ylabel(’CE ’)

391 plt.xlabel(’Epoch ’)

392 plt.legend(loc=" upper right")

393 plt.show()

394

395 # Plot history: Accuracy

396 plt.figure ()

397 plt.plot(history22.history[’sparse_categorical_accuracy ’],

398 label=’Accuracy (training data) ’)

399 plt.title(’accuracy for Bank Fraud Dataset ’)

400 plt.ylabel(’Accuracy ’)

401 plt.xlabel(’Epoch ’)

402 plt.legend(loc=" upper left")

403 plt.show()

404

405 #Test results

406 modelo2.evaluate(X_test , y_test)

407 y_pred32 = modelo2.predict(X_test)

408

409 print(’Accuracy: %.5f’ % accuracy_score(y_test , np.argmax(y_pred32 , axis=1 )))

410 print(classification_report(y_test , np.argmax(y_pred32 , axis=1 )))

411

412 confusion_matrix2 = confusion_matrix(y_test , np.argmax(y_pred32 , axis=1 ))

413 print(confusion_matrix2)

414

415

416

417 ### THIRD MODEL

418 #Structure

419 modelo3 = keras.Sequential ([

420 layers.Dense(64, activation = "relu"),

421 tf.keras.layers.Dropout (0.1),

422 layers.Dense (128, activation = "relu"),

423 tf.keras.layers.Dropout (0.1),

424 layers.Dense (256, activation = "relu"),

425 tf.keras.layers.Dropout (0.1),

426 layers.Dense (512, activation = "relu"),

427 tf.keras.layers.Dropout (0.1),

428 layers.Dense (256, activation = "relu"),

429 tf.keras.layers.Dropout (0.1),

430 layers.Dense (128, activation = "relu"),
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431 tf.keras.layers.Dropout (0.1),

432 layers.Dense(2, activation = "relu"),

433 ])

434

435 modelo3.compile(optimizer=tf.keras.optimizers.SGD(learning_rate =0.0001) ,

436 loss=LOSS_FUNC ,

437 metrics=ACC_FUNC)

438

439 history23 = modelo1.fit(X_train , y_train , epochs=EPOCAS)

440

441 #Accuracy and loss representation

442 plt.figure ()

443 plt.plot(history23.history[’loss ’], label=’Loss (training data)’)

444 plt.title(’Loss for Bank Fraud Dataset ’)

445 plt.ylabel(’CE ’)

446 plt.xlabel(’Epoch ’)

447 plt.legend(loc=" upper right")

448 plt.show()

449

450 # Plot history: Accuracy

451 plt.figure ()

452 plt.plot(history23.history[’sparse_categorical_accuracy ’],

453 label=’Accuracy (training data) ’)

454 plt.title(’accuracy for Bank Fraud Dataset ’)

455 plt.ylabel(’Accuracy ’)

456 plt.xlabel(’Epoch ’)

457 plt.legend(loc=" upper left")

458 plt.show()

459

460 #Test results

461 modelo3.evaluate(X_test , y_test)

462 y_pred33 = modelo3.predict(X_test)

463

464 print(’Accuracy: %.5f’ % accuracy_score(y_test , np.argmax(y_pred33 , axis=1 )))

465 print(classification_report(y_test , np.argmax(y_pred33 , axis=1 )))

466

467 confusion_matrix3 = confusion_matrix(y_test , np.argmax(y_pred33 , axis=1 ))

468 print(confusion_matrix3)
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