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Abstract 

 The main contribution of this study entails an exhaustive analysis of high frequency time 

series of cryptocurrencies with the largest market capitalization in 2022, namely Bitcoin, Ether and 

Tether through the application of a set of time series methods aimed at finding the best performing 

forecasting methodology. 

To uncover the hidden interdependencies and interactions among these three 

cryptocurrencies, the persistence, cointegration, causality, mutual information, variance 

decomposition, transmission of impulse responses, short-term and long-terms spillover effects were 

evaluated. Results of GARCH-DCC models shown that high historical correlations between Bitcoin and 

Ether make them good candidates for pairs trading. Johansen Cointegration test allowed to devise a 

stationary dynamic portfolio consisting of a certain number of Bitcoin, Ether and Tether shares 

suggested by a cointegrating vector.  

In case of trading the individual cryptocurrencies, pairs trading or portfolio trading profits 

depend on the correctness of forecasted price moves. For these reasons prices of each 

cryptocurrency were forecasted by comparing performance of the traditional linear Autoregressive 

integrated moving average (ARIMA) model with the Long short-term memory (LSTM), Support Vector 

Regression (SVR) and Random Forest regression models, that are established machine learning tools 

to grasp non-linear complex interactions. The forecasting accuracy of individual models was 

contrasted against the hybridization framework. A novel approach of hybridization suggested in this 

study permitted to forecast the linear portion of cryptocurrencies’ time series with ARIMA, whereas 

the non-linear part is captured with LSTM, SVR and Random Forest models.  

The results of computer simulations revealed that LSTM model ensures the highest among all 

models tested, at least 98.5% accuracy of forecasting for all three cryptocurrencies. Although the 

Hybrid Arima-Random Forest provided the highest accuracy for BTC and ETH prices, LSTM was the 

only model that was able to deliver high accuracy of USDT price predictions.  

JEL classification: C320, G170 ,C580, G190 

Keywords: causality, cointegration, order of integration, ARIMA, SVR, Random Forest, Hybrid 

modelling techniques  
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Introduction 

Over the last decade cryptocurrencies have gained much popularity as an 
alternative to regular currencies. Prices of cryptocurrencies are characterized by 
nonlinearity, uncertainly and high volatility, which affects the predictive capacity of 
time series forecasting models and means high levels of risk for investors.  

The majority of studies dealing with price prediction, volatility, seasonality and 
other trends in cryptocurrencies were focused on bitcoin that still dominates the 
market. Up to now cryptocurrency time series have been analyzed with a wide range 
of empirical models that provide a certain knowledge base about their accuracy, 
adequacy and appropriateness (e.g. Sebastião and Godinho (2021), Jang and Lee 
(2018), Liu et al (2021), McNally, Roche and Caton (2018), Kinateder and 
Papavassilioub (2021) and others. Nevertheless, under the constantly changing market 
conditions, boom-bust nature of cryptocurrency markets, emergence of new crypto 
coins, a search of an adequate methodology for cryptocurrency price forecasting keeps 
being highly relevant. Recent breakthroughs in artificial intelligence lead to wide 
adoption of this new technology in the financial market. Machine learning (a sub-field 
of artificial intelligence) gained wide recognition among individuals and financial 
institutions for its prediction accuracy. 

This study is an example of cross-sectional research of three cryptocurrencies 
with the largest market capitalization in 2022, namely Bitcoin, Ethereum and Tether. 
The main objective of this study is to uncover the hidden interdependencies and 
interactions among these three cryptocurrencies and to identify the most accurate 
method for price forecasting. This study is organized the following way: 

In the first chapter the persistence, cointegration, bivariate and multivariate 
causality relationships, mutual information, transmission of impulse responses, short-
term and long-terms spillover effects in cryptocurrency prices and returns were 
evaluated. Knowing how the cryptocurrency prices can interact is vital for devising of 
effective investment strategies. Results of GARCH-DCC model permitted to suggest 
Bitcoin and Ether for pairs trading; Tether can be used as a base currency in both pairs. 
A dynamic portfolio of three cryptocurrencies was built based on the results of the 
Johansen Cointegration test. 

In the second chapter cryptocurrency prices were forecasted by comparing 
performance of the Long short-term memory (LSTM), Support Vector Regression (SVR) 
and Random Forest regression models, that are established machine learning tools to 
grasp non-linear complex interactions. Price forecasts were contrasted against the 
predictions of the traditional linear Autoregressive integrated moving average (ARIMA) 
model.  
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In order to combine the classic and machine learning approaches on financial 
time series forecasting, Hybrid ARIMA-Random Forest, Hybrid Arima-SVR and Hybrid 
Arima-LSTM models were developed. The hybrid combination is expected to be 
successful, since it permits decomposition of time series in linear and nonlinear trends 
that are forecasted separately. According to this approach, linear part is predicted with 
ARIMA, and non-linear part, i.e. residuals of ARIMA model, are forecasted with 
machine learning models that are known to outperform the traditional models in 
capturing nonlinear relationships. Consecutively, the combination of the two types of 
models should encompass with high accuracy both linear and nonlinear tendencies of 
the time series in the hybrid framework.  

The study allows us to make several noteworthy contributions to the existing 
empirical literature:  

First, it provides a thorough investigation of interdependencies and interactions 
among three cryptocurrencies with the largest market capitalization.  The 
interdependencies in cryptocurrency market unavoidably warrant a causal analysis, 
that was not done in existing literature in such depth as in this study. 

Although majority of studies focus on Bitcoin, the present study considers less 
popular for prediction Ether and Tether and investigates their long-term and short 
term interactions among themselves and with Bitcoin.  

High correlation and mutual information between BTC and ETH can be used in 
devising an investment strategy can consist in spread trading by simultaneously taking 
opposite positions on BTC and ETH in order to take advantage of the small differences 
that arise between these underlyings over time. In contrast, negative correlations 
between USDT and BTC or ETH permit  to diversify or mitigate the risk associated with 
a portfolio.  

Johansen cointegration analysis permitted to construct the stationary  portfolio 
of Bitcoin, Ether and Tether.  Investors can profit from purchasing/selling this portfolio 
when price is low/high and get a profit when its price returns to the mean or crosses 
above/below a certain level. Cointegrated assets are also used for hedging and pairs 
trading, limiting the potential risks and loses.  

Second, as an remarkable application in the cryptocurrency market, this study 
identifies the most accurate method of price forecasting for Bitcoin, Ether and Tether, 
contrasting the traditional linear ARIMA model, three machine learning models and 
three hybrid techniques.  

The results of computer simulations revealed that the least predictable 
cryptocurrency is USDT whose price trajectory that is characterized by a high frequency 
of oscillations of different amplitude around the mean. 
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The most predictable cryptocurrency is Ether. ARIMA, Random Forest, Hybrid 
Arima-Random Forest, Hybrid Arima-SVR, LSTM and hybrid ARIMA-LSTM models 
ensured almost 100% accuracy of predictions on training and test data.  

As for Bitcoin, ARIMA, Random Forest, Hybrid Arima-Random Forest, Hybrid 
Arima-SVR, LSTM and Hybrid Arima-LSTM had accuracy of predictions exceeding 97%.  

A comparison among the models permits to conclude that the LSTM model had 
the highest predictive capacity for all three cryptocurrencies, followed by the Random 
Forest and Hybrid Arima-Random Forest models.  

No previous study to the best of author’s knowledge and through search in peer-
reviewed databases has empirically explored the interdependencies and interactions 
among Bitcoin, Ether and Tether and combined the ARIMA with machine learning 
regression techniques for their price prediction. 

The results of this study is especially relevant for finance practitioners and 
cryptocurrency traders.  

The full model code that is written in R is provided on GitHub Repository with 
the link https://github.com/ODknv/ML4cryptos. 
  

https://github.com/ODknv/ML4cryptos
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Background and Literature Review 

This thesis aims to add to the scientific discussions on cryptocurrency 
forecasting.   

A cryptocurrency is volatile digital security designed to operate as a tool of 
exchange that uses secure cryptography (Gandal and Halaburda 2016). 
Cryptocurrencies seek to benefit from security, anonymity, lack of central control and 
slowly evolving governmental regulation. Although cryptocurrencies have been 
increasingly used by investors for portfolios diversification and hedging, thanks to their 
high rates of return and low correlation with the other types of assets, they are viewed 
as a highly speculative asset (Corbet et al. (2018), Chuen et al. (2017), Liu and Tsyvinski 
(2021). Because of high volatility cryptocurrencies so far did not became a standard 
globally accepted medium of exchange. The prices of cryptocurrencies are 
characterized by nonlinear trends and high volatility that increases investor risk. 

Apparently, there is no consensus on the real value of cryptocurrencies among 
the scientific community. The prevailing conclusion is that the exchange rate of the 
majority of cryptocurrencies is determined mainly by the ratio of demand and supply, 
which in its turn is influenced by the public regulation of crypto markets, inflation, 
interest rate, technological developments, such as improvements in blockchain 
technology, security concerns, institutional  interest, high profile support, competition 
from other cryptocurrencies, and market sentiment, CNBC (2019), Selmi et al (2018), 
Cheah and Fry (2015),  Blau (2018), Liu and Tsyvinski (2021).  

 The total capitalization of the global cryptocurrency market peaked at over $2.9 
trillion in November 2021. However, because of the high volatility inherent to the 
crypto markets, at the end of 2022, crypto market cap fell to $798 billion (Forbes, 
2023).  Bitcoin (BTC), Ether (ETH) and Tether (USDT) had the largest market 
capitalization in 20221.   

Bitcoin is by far the largest in terms of volumes traded and market capitalization 
crypto coin (CoinMarketCap, 2023, https://coinmarketcap.com) out of nearly 10,000 
cryptocurrencies that exist today (Best, 2022). Bitcoin was created by an unknown 
entity under the name of Satoshi Nakamoto and was released in January 2009. In 
proof-of-work based systems such as Bitcoin, participants contribute to broadcasting 
and verifying transactions. “Miners” do the computational work required to assemble 
new, valid blocks and commit them to the shared ledger. In proof-of-work systems 
mining does not serve the purpose of verifying transactions (as this activity is fairly 

 
1 StealthEX ranking (December 28, 2022) based on market capitalization: Top 10 Cryptocurrencies of 2022 by 

Market Cap, https://stealthex.io/blog/top-10-cryptocurrencies-of-2022-by-market-cap/ 
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light computationally), but of building a credible commitment against an attack. Since 
blocks are chained together, the audit trail formed overtime becomes more difficult to 
tamper with as more blocks are added, and computing power has been sunk to support 
it. As a result, in proof-of-work systems, a blockchain is only as secure as the amount 
of computing power dedicated to mining it. This generates economies of scale and a 
positive feedback loop between network effects and security: as more participants use 
a crypto token, its value increases, which in turn attracts more miners (due to higher 
rewards), ultimately increasing the security of the shared ledger.  

Ether is the coin to invests in the Ethereum cryptocurrency. Ethereum is a 
decentralized computing network built on blockchain technology also makes it 
possible to create and run applications, smart contracts and other transactions on the 
network. Bitcoin doesn’t offer these functions. Ethereum uses the proof of stake 
instead of the proof-of-work consensus mechanism, which permits it to process 
transactions much faster, however, it is less secure against attacks. 

Tether token is a stablecoin backed by fiat currencies like U.S. dollars and Euro. 
Tether hypothetically keeps a value equal to one of those denominations. In theory, 
this means Tether’s value is supposed to be more stable than other cryptocurrencies, 
and this feature is favored by investors who are wary of the extreme volatility of crypto 
coins and tokens. Tether tokens are supported by multiple blockchains (e.g., Bitcoin, 
Ethereum, TRON, EOS, Algorand, Solana, and Bitcoin Cash). So, the token designers 
wanted to facilitate Tether integration into global cryptocurrency market and adoption 
by investors. 

Almost all cryptocurrencies, including the abovementioned, are secured by 
blockchain networks. A blockchain is a decentralized ledger of all transactions across a 
peer-to-peer network. Blockchain works by having transactions recorded on “blocks” 
which are linked together with a cryptographic hash function so that the transaction 
history cannot be changed without ruining the entire blockchain. Cryptographic proof 
is provided by a peer-to-peer network consisting of nodes (servers that store the entire 
transaction history/blockchain) and miners that generate new blocks within the 
network. Together, they form ‘the Blockchain’, a validated public ledger consisting of 
all previous events.  It can be used to register any asset by anyone and anywhere 
(Swan, 2015).  

Under the constantly changing market conditions, the boom-bust nature of 
cryptocurrency markets, rapid emergence of new crypto coins and tokens, a search of 
an adequate method for cryptocurrency price forecasting is highly relevant as it will 
permit to reduce investor risk. Investors regularly monitor the markets in a pursuit of 
financial assets that will out- or underperform in the market in order to create 
investment strategies. Even small improvements in predictive power can generate 
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large profits. Therefore, correct forecasting of future values in a time series keeps on 
being among the most researched topics in financial investment. 

Bitcoin, Ether and Tether are supposed to compete with each other and share 
the  same  price formation  determinants. Considering that Bitcoin continues to be a 
dominant cryptocurrency and is often used as a medium of exchange to buy other 
cryptocurrencies, price developments of Bitcoin are likely to impact prices of other 
cryptocurrencies. Therefore, it is important to capture to the fullest information, 
patterns, dependencies, desirably from the different perspectives, about the stocks 
before predicting their price movements. Unlike traditional equity market, many 
cryptocurrencies generally are correlated among themselves and have low correlation 
with the traditional assets (Lahajnar S.& Rozanec A., 2020). Nonetheless, as proven by 
Hassler and Hosseinkouchack  (2022) and Yule (1926), correlation may be misleading 
in nonlinear systems such as stock markets, which gives rationale to gauge 
cryptocurrency interactions with Granger causality, cointegration and transfer entropy 
methods. For example, Obeng, C., & Attor, C. (2022) conducted the cointegration test 
and impulse response analysis with VECM model for the top 9 cryptocurrencies’ closing 
prices. They found that any movement in the price level Bitcoin and Ether dominate 
the market share at 41 % and 17%, respectively, leads to a change in the price or 
returns of the remaining altcoins. Bação et al (2018) give evidence about the significant 
lagging feedback from Ethereum, Ripple, Litecoin and Bitcoin Cash to Bitcoin.  

Several studies were dedicated to forecasting prices of cryptocurrencies 
employing both the traditional techniques for time series forecasting and modern 
machine learning models. Alahmari (2019) defended the supremacy of ARIMA models 
in predicting prices of Bitcoin, XRP and Ether on a daily time series. Kumar (2019) found 
out that ARIMA framework outperforms Neural Network approaches in forecasting the 
returns of Bitcoin and Ethereum on a shorter time-horizon, whereas the opposite holds 
true in a long run. Rebane et al. (2018) acknowledged that Recurrent Neural Networks 
generated superior results comparing to ARIMA models for Bitcoin price prediction. 
Tripathi&Tripathi (2022) compared Random Walk, ARIMA, artificial neural network 
(ANN) and ensemble model in forecasting prices of Bitcoin and Ripple and 
demonstrates that the forecasting accuracy of the ensemble model is better than all 
the component models (Random Walk, ARIMA and ANN). Chen et. al. (2022) 
acknowledged that LSTM-ARIMA outperforms ARIMA model in forecasting the 
portfolio prices of bitcoin and gold.  

 
However, few studies until now have forecasted cryptocurrency prices with a 

hybrid framework. Nevertheless, the hybrid combination is expected to be especially 
successful in predicting the highly volatile and non-linear cryptocurrency prices,  since 
it permits decomposition of time series in linear and nonlinear trends that can be 

https://www.researchgate.net/scientific-contributions/Bhavya-Tripathi-2231296362
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forecasted separately. According to the hybrid approach proposed by Zhang (2003) 
linear part is predicted with ARIMA, and non-linear part, i.e. residuals of ARIMA model, 
are forecasted with machine learning models that are known to capture well the 
nonlinear interactions. Consecutively, the combination of the two types of models 
should encompass with high accuracy both linear and nonlinear tendencies of the time 
series in the hybrid framework.  

Chapter 1. Statistical Dependencies and Interactions Among the 
Selected Cryptocurrencies  

This chapter is dedicated to the investigation of the correlation, covariation, 
cointegration, causality and spillover effects in cryptocurrency prices and returns of 
the 3 cryptocurrencies with the largest market capitalization in 2022, namely Bitcoin, 
Ether and Tether.   

Cryptocurrency markets are characterized by fluctuating interdependencies that 
give rise to bubbles or crashes. The interdependencies in cryptocurrency market 
unavoidably call for a causal analysis and for investigation of short-term correlations 
and long-term volatility spillovers among the mainstream cryptocurrencies. 
Knowledge of the types and patterns of cryptocurrency interactions is vital for planning 
effective investment strategies or crypto trading tactics. 

The causality, impulse response and spillover tests are applied to the log returns 
of crypto coins that are stationary, whereas the cointegration test is applied to the 
non-stationary Adjusted Closing Prices.  

The volatility of low frequency daily historical data of cryptocurrencies can be 
the best investigated with the GARCH family of heteroscedasticity models whereas the 
5-year length of the data justifies the power of investigating the unit root tests, 
cointegration and causality relationships.  

The Figure 1 illustrates that Tether had high frequency of oscillations during 
2018-mid-2020, and then it stabilizes. In contrast, BTC and ETH had much higher 
frequency of oscillations starting from 2021. Overall, prices of BTC and ETH follow quite 
similar trend of different magnitude. This could imply a potential linear relationship 
between these two coins. 
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Figure 1 Dynamics of BTC, ETH and USDT Adjusted Close Prices, USD 

Source: author’s visualization in R using the data of Yahoo finance  

1.1. Order of Integration and Structural Breaks 

As shown in the Figure 2 below, for all three cryptocurrencies, autocorrelations 
are significant for the first 30 lags, and the first lag of both the standard and partial 
correlogram appear closely equal to one, which suggests non-stationarity: 
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Figure 2 ACF and PACF of Adjusted Close Prices  

Source: author’s estimates in R using the data of Yahoo finance  

Analyzing the ACF and PACF charts on Figure 2 it’s difficult to guess the order to 
integration of the time series, therefore, the stationarity tests were applied upon the 
differenced series. Apparently, the first differencing of the Adjusted Close Prices was 
sufficient to make the time series stationary, as illustrated on the Figure 3  and Figure 
4 below:  



14 
 

 

Figure 3 The first differences of Adjusted Close Prices  

Source: author’s visualization in R using the data of Yahoo finance  
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Figure 4 The second differences of Adjusted Close Prices  

Source: author’s visualization in R using the data of Yahoo finance  

Given that the ACF charts suggest long memory in BTC, ETH and USDT (Figure 2), 
the strength of long memory or persistence was quantified with the Hurst exponent. 
The Hurst exponent is commonly used in quantitative finance to analyze the behavior 
of financial markets and make predictions about future trends. The Hurst exponent is 
calculated using by rescaled range analysis. The basic idea behind this method is to 
calculate the range of the cumulative sum of a time series and compare it to the 
standard deviation of the series. Hurst exponent always ranges between 0 and 1. It’s 
values in the range (0.5; 1] suggests that that time series is persistent which roughly 
translates to trending, i.e. the stock prices are likely to continue in the same direction 
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(either increasing or decreasing) for a longer period of time. Values lower than 0.5 
indicate that time-series are anti-persistent which roughly translates to mean 
reverting. Values around 0.5 imply that the time series is random walk and prediction 
of future based on past data is not possible. 

Values of the Hurst exponent suggest that time series of all three 
cryptocurrencies display long-term memory, as shown in  Table 1: 

Table 1 Hurst exponent for the Adjusted Close Prices 

Bitcoin Simple R/S Hurst estimation:          0.885 

Ether Simple R/S Hurst estimation:          0.882 

Tether Simple R/S Hurst estimation:          0.772 

Source: author’s estimates in R using the data of Yahoo finance  

As a matter of a fact, the Hurst exponentiation, the stationarity tests and the 
ACF diagrams can imply that the series behave in a quasi-unit root way (they have long 
memory, although will eventually converge to the series average). That means that the 
AR(1) component of any model may not be statistically exactly equal to 1 but close to 
it.  

Seasonal and Trend Decomposition based on Loess test terminated with the 
message that time series of cryptocurrencies prices under investigation are “not 
periodic or have less than two periods”. The Classical Seasonal Decomposition by 
Moving Averages test of R neither detected the seasonality in the data, therefore there 
is no need to further investigate seasonality effects with the current degree of data 
disaggregation. 

The Stationarity Tests for the Adjusted Close Prices of the selected 
cryptocurrencies are presented below, Table 2:  

Table 2 Stationarity Tests  

Crypto 
Coin 

Test results Stationarity Order 
of 

Integr
ation 

BTC Dickey-Fuller = -1.4168, Lag order = 12, p-
value = 0.8252 
KPSS Level = 11.31, Truncation lag 
parameter = 8, p-value = 0.01 
KPSS Trend = 1.6892, Truncation lag 
parameter = 8, p-value = 0.01 

non-stationary 
(ADF and 
KPSS) 

1 

https://en.wikipedia.org/wiki/Decomposition_of_time_series
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Number of differences required for a 
stationary series:     ndiffs 1 nsdiffs  0  

BTC-1st 
order of 
differenc
ing 

Dickey-Fuller = -11.403, Lag order = 12, p-
value = 0.01 
alternative hypothesis: stationary 
KPSS Trend = 0.14279, Truncation lag 
parameter = 8, p-value = 0.05594 

stationary 
(ADF and 
KPSS) 

1 

BTC-2nd 
 order of 
differenc
ing 

Dickey-Fuller = -20.004, Lag order = 12, p-
value = 0.01 
alternative hypothesis: stationary 
KPSS Trend = 0.0033351, Truncation lag 
parameter = 8, p-value = 0.1 

stationary 
(ADF and 
KPSS) 

1 

ETH 
Dickey-Fuller = -1.9082, Lag order = 12, p-
value = 0.6172 
KPSS Level = 11.257, Truncation lag 
parameter = 8, p-value = 0.01 
KPSS Trend = 1.9068, Truncation lag 
parameter = 8, p-value = 0.01 
Number of differences required for a 
stationary series:     ndiffs 1 nsdiffs   0  

non-stationary 
(ADF and 
KPSS) 

1 

ETH-1st 
 order of 
differenc
ing 

Dickey-Fuller = -12.021, Lag order = 12, p-
value = 0.01 
alternative hypothesis: stationary 
KPSS Trend = 0.11426, Truncation lag 
parameter = 8, p-value = 0.1 

stationary 
(ADF and 
KPSS) 

1 

ETH-2nd 
 order of 
differenc
ing 

Dickey-Fuller = -19.256, Lag order = 12, p-
value = 0.01 
alternative hypothesis: stationary 
KPSS Trend = 0.0031969, Truncation lag 
parameter = 8, p-value = 0.1 

stationary 
(ADF and 
KPSS) 

1 

USDT 
Dickey-Fuller = -5.8318, Lag order = 12, p-
value = 0.01 
KPSS Level = 1.0949, Truncation lag 
parameter = 8, p-value = 0.01 
KPSS Trend = 0.28446, Truncation lag 
parameter = 8, p-value = 0.01 
Number of differences required for a 
stationary series:     ndiffs 1 nsdiffs  0  

stationary 
(ADF), 
non-stationary 
(KPSS) 

1 

USDT-1st  
order of 
differenc
ing 

Dickey-Fuller = -14.751, Lag order = 12, p-
value = 0.01 
alternative hypothesis: stationary 
KPSS Trend = 0.0054941, Truncation lag 
parameter = 8, p-value = 0.1 

stationary 
(ADF and 
KPSS) 

1 
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USDT-2nd  
order of 
differenc
ing 

Dickey-Fuller = -22.857, Lag order = 12, p-
value = 0.01 
alternative hypothesis: stationary 
KPSS Trend = 0.002608, Truncation lag 
parameter = 8, p-value = 0.1 

stationary 
(ADF and 
KPSS) 

1 

Source: author’s estimates in R using the data of Yahoo finance  

Since in case of USDT the results of ADF and KPSS stationarity tests seem to 
contradict each other2, it requires the more profound testing for the order of 
integration, unit roots and structural breaks in the data.  

The bootUR package of R that performs the Bootstrap Unit Root Tests with False 
Discovery Rate control for multiple testing by controlling the false discovery rate 
(Moon and Perron, 2012 and Romano, Shaikh and Wolf,  2008) suggested zero order 
of integration for USDT and the first order of integration for BTC and ETH Adjusted 
Close Prices, see Figure 5: 

 

 

Figure 5 Order of integration of Adjusted Close Prices  

Source: author’s visualization in R using the data of Yahoo finance  

Structural break is the abrupt change in a time series at a point in time  and they 
are a frequent reason of a forecast failure (Hendry 2000; Hendry and 
Clements 2003). Structural breaks can be caused by economic, technical, or legislative 
changes or large economic shocks. The longer the time series, the higher the 
probability that it was affected by the major disruptive events. Detecting the existence 
and the date of structural breaks is necessary for understanding the drivers of 
structural changes and their effects on a time series analysis.  

The results of the Zivot-Andrews, (Zivot and Andrews, 1992) Unit Root Test for 
the Adjusted Close Prices of three cryptocurrencies are shown in Table 3 below:  

 
2 Tether is a "stable coin" whose price is indexed to the US dollar and therefore its normal to expect that it exhibits a 
different return and volatility characteristics than other cryptocurrencies. 

https://rdrr.io/cran/bootUR/
https://link.springer.com/article/10.1007/s00181-021-02137-w#ref-CR18
https://link.springer.com/article/10.1007/s00181-021-02137-w#ref-CR19
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Table 3 Zivot-Andrews Unit Root Test 

BTC 

ZAbtc =ur.za(BTCdf$BTC_Adjusted,   model ="both", lag=NULL); summary(ZAbtc) 
Call:lm(formula = testmat) 
Residuals: 
    Min      1Q  Median      3Q     Max  
-7486.7  -209.5    -8.9   234.6  6984.3  
Coefficients: 
                     Estimate      Std. Error        t value    Pr(>|t|)     
(Intercept)  59.619167   64.372724      0.926      0.354     
y.l1               0.984376     0.003227        305.035  < 2e-16 *** 
trend            0.140727     0.099206        1.419      0.156     
du                767.692766  165.365546   4.642       3.69e-06 *** 
dt                 -1.194078     0.241505      -4.944       8.34e-07 *** 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 1001 on 1821 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.9965, Adjusted R-squared:  0.9965  
F-statistic: 1.31e+05 on 4 and 1821 DF,  p-value: < 2.2e-16 
Teststatistic: -4.8415  
Critical values: 0.01= -5.57 0.05= -5.08 0.1= -4.82  
Potential break point at position: 1076  
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ETH 
ZAeth =ur.za(ETHdf$ETH_Adjusted,   model ="both", lag=NULL); summary(ZAeth) 
Call:lm(formula = testmat) 
Residuals: 
    Min      1Q  Median      3Q     Max  
-896.34  -13.63   -3.22   14.19  541.87  
Coefficients: 
                    Estimate     Std. Error   t value      Pr(>|t|)     
(Intercept) -2.473265   4.425430   -0.559       0.57632     
y.l1               0.988103   0.002994    330.017   < 2e-16 *** 
trend            0.015897   0.006521    2.438       0.01487 *   
du                39.884427  11.774046   3.387      0.00072 *** 
dt                 -0.126616   0.030621   -4.135       3.71e-05 *** 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 79.52 on 1821 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.9956, Adjusted R-squared:  0.9956  
F-statistic: 1.035e+05 on 4 and 1821 DF,  p-value: < 2.2e-16 
Teststatistic: -3.9736  
Critical values: 0.01= -5.57 0.05= -5.08 0.1= -4.82  
Potential break point at position: 1297  
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USDT 
ZAusdt=ur.za(USDTdf$USDT_Adjusted, model ="both", lag=NULL); summary(ZAusdt) 
Call: lm(formula = testmat) 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.033334 -0.000859  0.000057  0.000693  0.052936  
Coefficients: 
                     Estimate      Std. Error   t value   Pr(>|t|)     
(Intercept)  4.120e-01   1.895e-02   21.742   < 2e-16 *** 
y.l1               5.899e-01   1.885e-02   31.289    < 2e-16 *** 
trend           -1.406e-05   2.072e-06   -6.787   1.55e-11 *** 
du                 5.151e-03   4.849e-04   10.622   < 2e-16 *** 
dt                  1.199e-05   2.055e-06    5.835     6.36e-09 *** 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.003528 on 1821 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.5274, Adjusted R-squared:  0.5263  
F-statistic:   508 on 4 and 1821 DF,  p-value: < 2.2e-16 
Teststatistic: -21.7496  
Critical values: 0.01= -5.57 0.05= -5.08 0.1= -4.82  
Potential break point at position: 339  

 

Source: author’s estimates in R using the data of Yahoo finance  
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As follows from Table 3,  Zivot-Andrews (Z-A) test for BTC suggests structural 
break in data on 11/12/2020 (potential break point at position: 1076). In absolute 
values, t-statistics of Z-A test is lower than the critical values of (1%, 5% and 10%) 
levels, that permits to accept the Null hypothesis of unit root. The Zivot-Andrews test 
for ETH suggests that there is break in data on 20/07/2021 (potential break point at 
position: 1297). The T-statistics of Z-A test is lower than critical values (in absolute 
value), accepting the Null hypothesis of unit root. The Zivot-Andrews test for USDT 
suggests that there is break in data on 05/12/2018 (potential break point at position: 
339). In absolute numbers, the T-statistics of Z-A test is higher than critical values, so 
it rejects the Null hypothesis of unit root.  

1.2. Correlation Analysis  

Correlation analysis has detected significant positive correlation (0.832) 
between the log returns of BTC and ETH, and also high positive correlation between 
the Adjusted Close Prices of BTC and ETH (0.923), which means that BTC and ETH tend 
to move together, whereas USDT has a low negative correlation with BTC and ETH, see 
Table 4: 

Table 4 Correlations among cryptocurrencies 

Log Returns 

 BTC ETH  USDT 

BTC 1.000 0.832 -0.026 
ETH   0.832 1.000 -0.060 

USDT -0.026 -0.060 1.000 
Adjusted Close Prices 

BTC 1.000 0.923 -0.155 

ETH   0.923 1.000 -0.153 
USDT -0.155 -0.153 1.000 

Source: author’s estimates in R using the data of Yahoo finance  

Considering high correlation between BTC and ETH, a strategy can consist in 

spread trading by taking simultaneously the opposite positions on BTC and ETH in 

order to take advantage of small differences that arise between these underlyings over 

time. Negative correlations between USDT and BTC or ETH can be used to diversify, or 

mitigate, the risk associated with a portfolio, so that a fall in price of one 

cryptocurrency will at least partially offset with a rise in price of another 

cryptocurrency.   
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1.3. Autocorrelation in Log Returns and the Autoregressive 

Conditional Heteroscedasticity  

 Figure 6 illustrates the dynamics of log returns, squared log returns and 

absolute values of log returns of the three cryptocurrencies. The Ljung-Box test 

confirmed the absence of autocorrelation in the square log returns of all 

cryptocurrencies. ARCH-LM Test applied to the log returns manifested the presence of 

correlation between the volatility of time series, the so-called ARCH effects, Figure 6. 

Existence of ARCH effects is important for the GARCH modelling that describes a 

changing pattern in variance, and was carried further in this study.  
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Auto correlation in square log retruns: 

Box-Ljung test with 12 lags  

Autoregressive conditional heteroscedasticity  
ARCH LM-test with 12 lags 

X-squared = 44.898, df = 12, 
 p-value = 1.073e-05 

Chi-squared = 38.518, df = 12,  
p-value = 0.0001263 

 

Auto correlation in square log retruns: 

Box-Ljung test with 12 lags  

Autoregressive conditional heteroscedasticity 
ARCH LM-test with 12 lags 

X-squared = 59.601, df = 12,  
p-value = 2.668e-08 

Chi-squared = 49.238, df = 12, 
p-value = 1.9e-06 
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Auto correlation in square log retruns: 

Box-Ljung test with 12 lags  

Autoregressive conditional heteroscedasticity 

ARCH LM-test with 12 lags 

X-squared = 518.57, df = 12, 
 p-value < 2.2e-16 

Chi-squared = 524.14, df = 12,  
p-value < 2.2e-16 

Figure 6 Log Returns of selected cryptocurrencies, USD 

Source: author’s visualization in R using the data of Yahoo finance  

The above charts show that volatility of all three cryptocurrencies exhibits 

clustering and has varied considerably over time. Although the magnitude of volatility 

is significantly lower for the USDT log returns than for the BTC and ETH log returns, all 

three cryptocurrencies display quite similar patterns with a large spike in volatility 

around March 2020 during the market turmoil.  

 The descriptive statistics for the log returns is presented in Table 5: 
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Table 5 Descriptive Statistics for the Log Returns  

 BTC ETH USDT 

Mean 0.001 0.001 0 
Variance 0.001 0.002 0 

Standard Deviation 0.038 0.05 0.004 
Skewness -1.211 -1.151 0.328 

Excess Kurtosis 16.462 12.406 59.775 

Source: author’s estimates in R using the data of Yahoo finance  

As shown in Table 5, Ether has the most volatile returns. In contrast, Tether has 
very stable returns because it’s a stablecoin. All cryptocurrencies exhibit the high 
degree of excess kurtosis. That is common among the cryptocurrencies and is an 
indicator for heavy tails, that is a requirement for GARCH models.  

1.4.  Mutual Information Between the Cryptocurrency Pairs  

The value of mutual information between the cryptocurrency pairs was 
calculated for further analysis. This value is a measure of mutual dependence between 
the two variables. Mutual information quantifies the amount of information that one 
variable provides about the other variable, and it does so without relying on any 
assumptions e.g., linearity. The Fastmit package of R was used to quantify the mutual 
information among the adjusted close prices of cryptocurrencies. This estimator is 
based on k-nearest neighbor method proposed by A. Kraskov et al. (2004). Mutual 
information, MI(X; Y), is the expected value of the logarithmic likelihood ratio between 
the joint probability distribution of random variables X and Y, (p(X, Y)) and the product 
of their marginal distributions (p(X) and p(Y) ):  

MI(X;  Y)  =  E[log (p(X, Y) / (p(X)  ∗  p(Y)))]            (1) 

In accordance with the results shown in Table 6, mutual information is especially 

strong between the BTC and ETH, and weak between the ETH and USDT, Table 6:  

Table 6 Mutual information  between cryptocurrencies pairs 

 ETH  USDT 
BTC 1.781611 0.3483559 
ETH    0.2946063 

Source: author’s estimates in R using the data of Yahoo finance  

https://en.wikipedia.org/wiki/Statistical_dependence
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1.5. Bilateral Granger Causality  and Shannon Transfer Entropy 

Analysis 

Positive causality and positive correlation is expected for the assets that are 
suitable for the pairs trading. Conversely, negative causality is anticipated in cases of 
competing financial entities such as equities and bonds, that can be used for portfolio 
diversification.  

The causality between cryptocurrencies in a short run was tested with the 
Granger causality test. This test makes use of Student's t-statistic and F-statistic tests 
and shows to which extent the value movement of one variable in the past can explain 
the value movement of another variable. The mathematical formulation of 
multivariate Granger causality is defined as follows (Granger, 1969):       

𝑋𝑡 = ∑ 𝐴𝜏
𝑝
𝜏=1 𝑌𝑡−𝜏 + 𝜀𝑡,                (2) 

where 𝑋𝑡 is a d-dimensional multivariate time series with 𝑡 = 1,2, … , 𝑇, p is the 
maximum number of lagged observations; A is the coefficient matrix and 𝜀𝑡 is the error 
term. The Granger causality is tested with the assumption of linear regression since it 
is not sensitive to nonlinear causal relationships.  

The bilateral Granger Causality tests (Granger, 1969) that were ran on the log 
returns of different pairs of cryptocurrencies show that among that among the tested 
pairs only ETH can predict USDT with the lag 2, Table 7:  

Table 7 Bilateral Granger Causality between the Log Returns  

Causality between BTC and ETH, lag=3 

  Dependent vairable BTC 
F 1.459  
Pr(>F) 0.2239 

  Dependent vairable ETH 
F 1.3779  
Pr(>F) 0.2478 

Causality between BTC and USDT, lag=2 

Dependent vairable USDT 
F  2.4491  
Pr(>F)  0.08666  

  Dependent vairable BTC 
F 0.6071  
Pr(>F) 0.5451 

Causality between USDT and ETH, lag=2 

Dependent vairable USDT 
F 3.7716  
Pr(>F)  0.0232 * 

Dependent vairable ETH 
F 0.7576   
Pr(>F) 0.469 

Source: author’s estimates in R using the data of Yahoo finance  
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This causality can be explained by the fact that USDT more often uses Ethereum 
than Bitcoin blockchains3. In fact, the causality between Bitcoin and USDT can be 
considered as “marginally significant”.  

 For this test, lags were selected based on the Akaike (AIC), Schwarz (SC or BIC), 
Hannan-Quinn (HQ) and Final the Prediction Error (FPE) information criteria. 

Furthermore, the causality between the log returns for the pairs of selected 
cryptocurrencies was investigated with Shannon Transfer entropy method (Shannon, 
1948). It is a nonlinear generalization of the Granger causality test that stems from 
information theory, and therefore is model-free and accounts for both linear and 
nonlinear causal effects. Shannon transfer entropy is given by the following equation: 

𝑇𝐽→𝐼(𝑘, 𝑙) = ∑ 𝑝(𝑖𝑡+1, 𝑖𝑡
(𝑘)

,

𝑖,𝑗

𝑗𝑡
(𝑙)

) ∙ log (
𝑝(𝑖𝑡+1 |𝑖𝑡

(𝑘)
, 𝑗𝑡

(𝑙)
)

𝑝(𝑖𝑡+1 |𝑖𝑡
(𝑘)

)
)  , 

 
(3) 

 

where  𝑇𝐽→𝐼 measures the information flow from process J to process I. J and I denote 

two discrete random variables with marginal probability distributions p(i) and p(j)  and  
joint probability distribution p(i,j) whose dynamical structures correspond to 
stationary Markov processes of order k. In the bivariate case, information flow from 
process  J to  process I  is measured by quantifying the deviation from the generalized 

Markov property 𝑝(𝑖𝑡+1 |𝑖𝑡
(𝑘)

) = 𝑝(𝑖𝑡+1|𝑖𝑡
(𝑘)

, 𝑗𝑡
(𝑙)

) relying on the Kullback-Leibler 

distance (Schreiber 2000, Behrendt et al, 2019). 

The bilateral tests ran on the log returns of different pairs of cryptocurrencies 
confirmed that among all tested pairs only ETH log returns can predict USDT log returns 
with 10% statistical significance, Table 8: 

Table 8 Causality with Shannon Transfer entropy between the Log Returns  

Direction         TE            Eff. TE     Std.Err.   p-value    sig 

ETH−>BTC  0.0028    0.0000    0.0016    0.8767   

Bootstrapped TE Quantiles (300 replications): 
     0%       25%     50%     75%    100% 

0.0008  0.0033  0.0042  0.0056  0.0107 

BTC−>ETH  TE            Eff. TE     Std.Err.   p-value    sig 

0.0012    0.0000    0.0017    1.0000   
Bootstrapped TE Quantiles (300 replications): 

 
3 https://tether.to/en/how-it-works/, https://kriptomat.io/cryptocurrencies/tether/what-is-
tether/,https://www.coinbase.com/price/tether 
 
 

https://tether.to/en/how-it-works/
https://kriptomat.io/cryptocurrencies/tether/what-is-tether/,https:/www.coinbase.com/price/tether
https://kriptomat.io/cryptocurrencies/tether/what-is-tether/,https:/www.coinbase.com/price/tether
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     0%       25%     50%     75%    100% 
 0.0014  0.0034  0.0041  0.0053  0.0109 

BTC−>USDT TE            Eff. TE     Std.Err.   p-value    sig 
0.0074    0.0024    0.0019    0.1200    

Bootstrapped TE Quantiles (300 replications): 
     0%       25%     50%     75%    100% 

0.0012  0.0034  0.0048  0.0062  0.0112 

USDT−>BTC TE            Eff. TE     Std.Err.   p-value    sig 
0.0046    0.0002    0.0017    0.4700   

Bootstrapped TE Quantiles (300 replications): 
     0%       25%     50%     75%    100% 

0.0015  0.0035  0.0045  0.0056  0.0100 

USDT−>ETH TE            Eff. TE     Std.Err.   p-value    sig 

0.0041    0.0000    0.0017    0.5067 
Bootstrapped TE Quantiles (300 replications): 
     0%       25%     50%     75%    100% 
0.0015  0.0030  0.0041  0.0053  0.0111 

ETH−>USDT 
 

TE            Eff. TE     Std.Err.   p-value    sig 

0.0079    0.0030    0.0020    0.0967      . 

Bootstrapped TE Quantiles (300 replications): 
     0%       25%     50%     75%    100% 
0.0014  0.0035  0.0048  0.0063  0.0117 

Source: author’s estimates in R using the data of Yahoo finance  

1.6.  Multivariate Granger Causality Test with a VAR Model 

This study continues with testing a multivariate Granger causality with a 
multivariate Vector Autoregression (VAR) model (Sims, 1980). The model was built for 
the stationary first differences in Adjusted Close prices of BTC, ETH and USDT. VAR is a 
multivariate forecasting algorithm that is used when two or more time series influence 
each other. These models are widely used in financial forecasting since they offer a 
framework for understanding the intertwined relationships of multivariate time series 
data in a systematic manner. Several valuable insights can be derived by analyzing the 
dynamic relationships among the variables in the model.  

By the definition, a variable X Granger-causes Y if Y can be better predicted 
based on the histories of both X and Y than by using the history of Y alone. The VAR 
models can be written as follows:    

https://www.machinelearningplus.com/time-series/time-series-analysis-python/
https://www.aptech.com/blog/introduction-to-the-fundamentals-of-time-series-data-and-analysis/
https://www.aptech.com/blog/introduction-to-the-fundamentals-of-time-series-data-and-analysis/
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𝑦𝑗,𝑡 = 𝜇𝑗 + ∑ ∑ 𝜑𝑗𝑖
𝑛
𝑖=1 𝑌𝑡−𝑗 

𝑚
𝑗=1 + ∑ 𝜀𝑗𝑡

𝑚
𝑗=1                                   (4) 

where 𝑦𝑗,𝑡 is the endogenous variable j at  time  t, 𝜑𝑗𝑖 (L) is the matrix in the backshift 

operator (L), 𝜇𝑗  is the constant value, and 𝜀𝑗𝑡 is the error term. The main results of the 

multivariate VAR model and its tests statistic are given in :  
Table 9:  

Table 9 VAR for the Stationarized Adjusted Close Prices  

Selection 
of lag 

AIC(n)  HQ(n)  SC(n) FPE(n) 

  6      6      3      6 

On the whole, the estimation results have rather low Adjusted R-squared coeffi
cients because cryptocurrency data tend to have much noise.  

Estimation results for equation BTCAdjdiff:  
===========================================  
BTCAdjdiff = BTCAdjdiff.l1 + ETHAdjdiff.l1 + USDTAdjdiff.l1 + BTCAdjdiff.l2 
+ ETHAdjdiff.l2 + USDTAdjdiff.l2 + BTCAdjdiff.l3 + ETHAdjdiff.l3 + USDTAdjd
iff.l3 + BTCAdjdiff.l4 + ETHAdjdiff.l4 + USDTAdjdiff.l4 + BTCAdjdiff.l5 + E
THAdjdiff.l5 + USDTAdjdiff.l5 + BTCAdjdiff.l6 + ETHAdjdiff.l6 + USDTAdjdiff
.l6 + BTCAdjdiff.l7 + ETHAdjdiff.l7 + USDTAdjdiff.l7 + const  
 
                 Estimate Std. Error t value Pr(>|t|)    
BTCAdjdiff.l1   6.603e-02  3.667e-02   1.801  0.07190 .  
ETHAdjdiff.l1  -1.339e+00  4.681e-01  -2.861  0.00428 ** 
USDTAdjdiff.l1 -1.257e+03  6.960e+03  -0.181  0.85665    
BTCAdjdiff.l2  -1.900e-02  3.654e-02  -0.520  0.60324    
ETHAdjdiff.l2   2.171e-01  4.647e-01   0.467  0.64043    
USDTAdjdiff.l2 -2.870e+03  7.940e+03  -0.361  0.71783    
BTCAdjdiff.l3   6.399e-02  3.670e-02   1.744  0.08136 .  
ETHAdjdiff.l3  -5.866e-01  4.638e-01  -1.265  0.20618    
USDTAdjdiff.l3 -3.130e+03  8.220e+03  -0.381  0.70342    
BTCAdjdiff.l4  -9.657e-03  3.663e-02  -0.264  0.79206    
ETHAdjdiff.l4   6.564e-01  4.633e-01   1.417  0.15670    
USDTAdjdiff.l4 -2.165e+03  8.387e+03  -0.258  0.79628    
BTCAdjdiff.l5   1.047e-01  3.659e-02   2.863  0.00425 ** 
ETHAdjdiff.l5  -1.480e+00  4.624e-01  -3.200  0.00140 ** 
USDTAdjdiff.l5 -1.300e+03  8.203e+03  -0.158  0.87412    
BTCAdjdiff.l6  -6.187e-02  3.671e-02  -1.685  0.09209 .  
ETHAdjdiff.l6   1.420e+00  4.643e-01   3.058  0.00226 ** 
USDTAdjdiff.l6 -6.262e+02  7.916e+03  -0.079  0.93696    
BTCAdjdiff.l7   2.150e-02  3.678e-02   0.585  0.55895    
ETHAdjdiff.l7  -1.249e+00  4.681e-01  -2.668  0.00770 ** 
USDTAdjdiff.l7  8.520e+02  6.925e+03   0.123  0.90210    
const           9.820e-01  2.339e+01   0.042  0.96651    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 997.4 on 1797 degrees of freedom 
Multiple R-Squared: 0.03123, Adjusted R-squared: 0.01991  
F-statistic: 2.758 on 21 and 1797 DF,  p-value: 3.23e-05  
 
Estimation results for equation ETHAdjdiff:  
===========================================  
ETHAdjdiff = BTCAdjdiff.l1 + ETHAdjdiff.l1 + USDTAdjdiff.l1 + BTCAdjdiff.l2 
+ ETHAdjdiff.l2 + USDTAdjdiff.l2 + BTCAdjdiff.l3 + ETHAdjdiff.l3 + USDTAdjd
iff.l3 + BTCAdjdiff.l4 + ETHAdjdiff.l4 + USDTAdjdiff.l4 + BTCAdjdiff.l5 + E
THAdjdiff.l5 + USDTAdjdiff.l5 + BTCAdjdiff.l6 + ETHAdjdiff.l6 + USDTAdjdiff
.l6 + BTCAdjdiff.l7 + ETHAdjdiff.l7 + USDTAdjdiff.l7 + const  
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                 Estimate Std. Error t value Pr(>|t|)     
BTCAdjdiff.l1   5.967e-03  2.882e-03   2.070 0.038577 *   
ETHAdjdiff.l1  -9.335e-02  3.680e-02  -2.537 0.011279 *   
USDTAdjdiff.l1 -2.228e+02  5.471e+02  -0.407 0.683937     
BTCAdjdiff.l2  -8.656e-03  2.872e-03  -3.013 0.002620 **  
ETHAdjdiff.l2   8.259e-02  3.653e-02   2.261 0.023880 *   
USDTAdjdiff.l2 -2.318e+02  6.242e+02  -0.371 0.710441     
BTCAdjdiff.l3   6.701e-03  2.885e-03   2.323 0.020297 *   
ETHAdjdiff.l3  -2.496e-02  3.646e-02  -0.685 0.493740     
USDTAdjdiff.l3 -1.888e+02  6.461e+02  -0.292 0.770176     
BTCAdjdiff.l4  -3.345e-03  2.879e-03  -1.162 0.245439     
ETHAdjdiff.l4   5.841e-02  3.642e-02   1.604 0.108919     
USDTAdjdiff.l4 -1.424e+02  6.593e+02  -0.216 0.828998     
BTCAdjdiff.l5   1.172e-02  2.876e-03   4.075 4.79e-05 *** 
ETHAdjdiff.l5  -1.836e-01  3.635e-02  -5.050 4.86e-07 *** 
USDTAdjdiff.l5 -1.576e+00  6.449e+02  -0.002 0.998050     
BTCAdjdiff.l6  -9.560e-03  2.886e-03  -3.313 0.000942 *** 
ETHAdjdiff.l6   1.928e-01  3.650e-02   5.281 1.44e-07 *** 
USDTAdjdiff.l6  5.016e+02  6.223e+02   0.806 0.420286     
BTCAdjdiff.l7   1.771e-03  2.891e-03   0.612 0.540312     
ETHAdjdiff.l7  -3.327e-02  3.680e-02  -0.904 0.366090     
USDTAdjdiff.l7 -7.735e+01  5.444e+02  -0.142 0.887027     
const           1.393e-02  1.838e+00   0.008 0.993954     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 78.41 on 1797 degrees of freedom 
Multiple R-Squared: 0.04837, Adjusted R-squared: 0.03725  
F-statistic:  4.35 on 21 and 1797 DF,  p-value: 1.915e-10  
 
Estimation results for equation USDTAdjdiff:  
============================================  
USDTAdjdiff = BTCAdjdiff.l1 + ETHAdjdiff.l1 + USDTAdjdiff.l1 + BTCAdjdiff.l
2 + ETHAdjdiff.l2 + USDTAdjdiff.l2 + BTCAdjdiff.l3 + ETHAdjdiff.l3 + USDTAd
jdiff.l3 + BTCAdjdiff.l4 + ETHAdjdiff.l4 + USDTAdjdiff.l4 + BTCAdjdiff.l5 + 
ETHAdjdiff.l5 + USDTAdjdiff.l5 + BTCAdjdiff.l6 + ETHAdjdiff.l6 + USDTAdjdif
f.l6 + BTCAdjdiff.l7 + ETHAdjdiff.l7 + USDTAdjdiff.l7 + const  
 
                 Estimate Std. Error t value Pr(>|t|)     
BTCAdjdiff.l1   2.482e-08  1.240e-07   0.200    0.841     
ETHAdjdiff.l1  -1.097e-06  1.584e-06  -0.693    0.489     
USDTAdjdiff.l1 -5.802e-01  2.355e-02 -24.640  < 2e-16 *** 
BTCAdjdiff.l2   1.056e-08  1.236e-07   0.085    0.932     
ETHAdjdiff.l2  -1.365e-07  1.572e-06  -0.087    0.931     
USDTAdjdiff.l2 -3.659e-01  2.686e-02 -13.621  < 2e-16 *** 
BTCAdjdiff.l3  -7.896e-08  1.241e-07  -0.636    0.525     
ETHAdjdiff.l3   1.054e-06  1.569e-06   0.671    0.502     
USDTAdjdiff.l3 -2.917e-01  2.781e-02 -10.489  < 2e-16 *** 
BTCAdjdiff.l4   3.028e-08  1.239e-07   0.244    0.807     
ETHAdjdiff.l4  -2.270e-07  1.567e-06  -0.145    0.885     
USDTAdjdiff.l4 -1.620e-01  2.837e-02  -5.710 1.32e-08 *** 
BTCAdjdiff.l5  -8.532e-08  1.238e-07  -0.689    0.491     
ETHAdjdiff.l5   1.040e-06  1.564e-06   0.665    0.506     
USDTAdjdiff.l5 -2.000e-01  2.775e-02  -7.207 8.41e-13 *** 
BTCAdjdiff.l6   1.377e-07  1.242e-07   1.108    0.268     
ETHAdjdiff.l6  -1.090e-06  1.571e-06  -0.694    0.488     
USDTAdjdiff.l6 -1.893e-01  2.678e-02  -7.069 2.23e-12 *** 
BTCAdjdiff.l7  -9.978e-08  1.244e-07  -0.802    0.423     
ETHAdjdiff.l7   1.387e-06  1.584e-06   0.876    0.381     
USDTAdjdiff.l7 -4.217e-02  2.343e-02  -1.800    0.072 .   
const          -1.030e-05  7.912e-05  -0.130    0.896     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.003374 on 1797 degrees of freedom 
Multiple R-Squared: 0.2722, Adjusted R-squared: 0.2637  
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F-statistic:    32 on 21 and 1797 DF,  p-value: < 2.2e-16  

Being tested with 8 lags, the residuals of VAR model are not autocorrelated, 
however, they do show serial correlation at smaller lags: 

Portmanteau Test (adjusted) with 8 lags 
data:  Residuals of VAR object VARmodel 
Chi-squared = 15.634, df = 9, p-value = 0.07494 

Based on the results of the ARCH-LM test we can reject the null hypothesis 
that the process is homoscedastic: 

ARCH (multivariate) 
data:  Residuals of VAR object VARmodel 
Chi-squared = 1135.9, df = 180, p-value < 2.2e-16 

As expected, the residuals of this model are not normally distributed: 

JB-Test (multivariate) 
data:  Residuals of VAR object VARmodel 
Chi-squared = 150686, df = 6, p-value < 2.2e-16 
 
$Skewness 

Skewness only (multivariate) 
 
data:  Residuals of VAR object VARmodel 
Chi-squared = 1522.1, df = 3, p-value < 2.2e-16 
 
$Kurtosis 

Kurtosis only (multivariate) 
 
data:  Residuals of VAR object VARmodel 
Chi-squared = 149164, df = 3, p-value < 2.2e-16 

 

Stability test 

The p-value of the M-fluctuation test permits us to reject the null hypothesis is 
that all model parameters are constant throughout the entire sample period: 

M-fluctuation test 

 
f(efp) = 1.99, p-value = 0.04683 

 The OLS-based CUSUM test indicates that none of the points in the charts out
steps the red critical bounds, so there are no structural brakes in the time series of th
e stationarized cryptocurrency prices: 
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Source: author’s estimates in R using the data of Yahoo finance  

As can be seen from the Error! Not a valid bookmark self-reference., the 
multivariate Granger causality test that was based on the multivariate VAR model by 
contrasting each cryptocurrency against the two others, demonstrated that  ETH 
Granger causes BTC and USDT, while USDT Granger causes ETH and BTC (in first 
differences), Table 10: 

Table 10 The multivariate Granger causality test  

$Granger 
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 Granger causality H0: BTC do not Granger-cause ETH USDT 
data:  VAR object VARmodel 
F-Test = 1.5701, df1 = 12, df2 = 5406, p-value = 0.09282 
$Instant 
 H0: No instantaneous causality between: BTC and ETH USDT 
data:  VAR object VARmodel 
Chi-squared = 751.87, df = 2, p-value < 2.2e-16 

$Granger 
 Granger causality H0: ETH do not Granger-cause BTC USDT 
data:  VAR object VARmodel 
F-Test = 2.1491, df1 = 12, df2 = 5406, p-value = 0.01164 
$Instant 
H0: No instantaneous causality between: ETH and BTC USDT 
data:  VAR object VARmodel 
Chi-squared = 752.27, df = 2, p-value < 2.2e-16 
$Granger 
 Granger causality H0: USDT do not Granger-cause BTC ETH 
data:  VAR object VARmodel 
F-Test = 2.8128, df1 = 12, df2 = 5406, p-value = 0.0007577 
$Instant 
 H0: No instantaneous causality between: USDT and BTC ETH 
data:  VAR object VARmodel 
Chi-squared = 7.3486, df = 2, p-value = 0.02537 

Source: author’s estimates in R using the data of Yahoo finance  

1.7. Analysis of Short-Run Dynamic Interactions with Impulse 

Response Functions 

For the investigation of the short-run dynamic interactions, the impulse 
response functions (IRF) were applied to the VAR model. An IRF describes the evolution 
of a VAR model’s reaction to a one-standard-deviation shock to each variable 
(Lütkepohl, 2010). This measure shows how the shock on one variable impacts another 
variable. In contrast, the forecast error variance decomposition (FEVD) provides 
information about the relative importance of each shock in affecting all variables in the 
system.  

https://link.springer.com/chapter/10.1057/9780230280830_16
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The impulse response function procedure starts with the unit root process. Since 
the impulse response function is the coefficient of vector moving average in the VAR 
model, the VAR model has to be transformed as the vector moving average: 

𝑦𝑡 = 𝜇 + ∑ 𝜑𝑖
∞
𝑖=0 𝜀𝑡−𝑖        (5) 

Where 𝑦𝑡  is the vector of the time-series variables, 𝜇 is the mean of 𝑦𝑡,  𝜑𝑖 is the 
impulse response function (impact spillover), and 𝜀𝑡 is the vector of the error terms.  
Given that the impulse responses one draws from the model are conditional on the 
ordering of the variables4, different options were tested, as shown in  
Figure 7: 

 

  
a) 

 
4 Orthogonalization is done using the Cholesky decomposition of the estimated error covariance matrix and  
interpretations may change depending on variable ordering. 
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b) 

  
c) 

Figure 7 Orthogonal impulse response shocks 

Source: author’s estimates in R using the data of Yahoo finance  

Modelling results show that the orthogonalized impulse from the stationarized 

BTC price does not affect USDT but generates a noticeable drop in ETH in the first 2 

lags if ETH comes in a first order in the IRF equation, and after the impulse response 
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function converges to zero. However, if Ether appears on the second position in the 

model, BTC shock causes rather small up and down movements in ETH that fade away 

after the first 14 lags,  

Figure 7 a).  Similarly, the impulse from ETH does not affect USDT, however, it 

generates up and down oscillations in BTC during the first 14 lags. Although the pattern 

of such movements does not depend on the ordering of BTC, the magnitude is much 

stronger when BTC is on the first order in the IRF equation,  

Figure 7 b). Impulse response from Tether produces similar patterns of impulse 

responses to ETH and BTC, however Bitcoin response is much stronger if it comes 

second in the IRF equation. For Ether the opposite holds true,  

Figure 7 c). 

1.8. Forecast error variance decomposition  

The forecast error variance decomposition is based upon the orthogonalized 
impulse response coefficient matrices and provides information about the relative 
importance of each innovation in affecting the forecast error variance of all response 
variables in the system. In other words, FEVD decomposes the variance of the forecast 
error into the contributions from specific exogenous shocks. By doing so, it 
demonstrates how important a shock is in explaining the variations of the variables in 
the model and shows how this importance changes over time. For example, some 
shocks may not be responsible for variations in the short-run but may cause longer-
term fluctuations. FEVD analysis for BTC, ETH and USDT is provided in Figure 8: 
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Figure 8 The forecast error variance decomposition  

Source: author’s estimates in R using the data of Yahoo finance  

As follows from Figure 8, through the whole horizon of forecasting, the majority 
of the variation in stationarized BTC prices comes from the shocks to the BTC itself and 
only starting from the period 6, ETH contributes to the formation of BTC price by less 
than 1%. No influence of USTD on BTC was detected. Through the whole horizon of 
forecasting, about 40% of the variation in stationarized ETH prices came from the 
chocks to ETH itself and the remaining 60% was influenced by BTC. The shock to 
stationarized USDT prices affects only themselves. All the impacts are stable through 
the model horizon.   

1.9. Johansen Cointegration Test  

In order to analyze the long-run relationships among the cryptocurrencies 
Johansen Cointegration Test (Johansen, 1991) was run on Adjusted Close Prices of BTC, 
ETH and USDT. This test permits to determine if three or more time series are 
cointegrated. In contrast to correlation, cointegration is a long-term relationship to 
prices. Cointegration can be seen as a measure of similarity of assets in terms of risk 
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exposure profiles. The prices of cointegrated assets are tethered due to the 
stationarity of the spread. 

A stationary series can be formed by taking a linear combination of the 
underlying cointegrated series. The cointegration test assesses the validity of a 
cointegrating relationship, using a maximum likelihood estimates approach. The test 
statistics indicates a presence of at most 2 integrating relationships. Obtained 
coefficients permit to build a portfolio of the three currencies, as indicated in Table 11: 

Table 11 Johansen Cointegration Test on Adjusted Close Prices  

Test results 

Selection of lag AIC(n)  HQ(n)  SC(n) FPE(n)  
     8      7      4      8  

Test Results for 
the maximum 
eigenvalue 

Test type: maximal eigenvalue statistic (lambda max) , with 
linear trend  
 
Eigenvalues (lambda): 
[1] 0.05218298 0.01279724 0.00294845 
 
Values of test statistic and critical values of test: 
 
          test 10pct 5pct  1pct 
r <= 2 |  5.39 6.50  8.18  11.65 
r <= 1 | 23.49 12.91 14.90 19.19 
r = 0  | 97.76 18.90 21.07 25.75 
 
Eigenvectors, normalised to first column: 
(These are the cointegration relations) 
 
              BTC_Adjusted.l3 ETH_Adjusted.l3  
USDT_Adjusted.l3 
BTC_Adjusted.l3   1.000000e+00    1.0000           1.000000 
ETH_Adjusted.l3   1.261644e+01    -14.6042         6.179327 
USDT_Adjusted.l3  3.861888e+07    2637.8679       -
9325.913866 
 
Weights W: 
(This is the loading matrix) 
                BTC_Adjusted.l3 ETH_Adjusted.l3 
USDT_Adjusted.l3 
BTC_Adjusted.d    -1.486087e-05    1.259883e-02    -
1.517032e-03 
ETH_Adjusted.d     1.934659e-06    1.337080e-03    -
6.268513e-06 
USDT_Adjusted.d   -4.612314e-09    1.011913e-10     
2.842483e-10 

Based on the results of Cointegration Tests, the following dynamic portfolio for 
the selected crypto currencies can be built:   

Portfolio = 1.000*BTC+ 1.261644e+01*ETH+ 3.861888e+07*USDT 

ADF test for 
the Portfolio 

Augmented Dickey-Fuller Test 
data:  Portfolio3 
Dickey-Fuller = -5.8658, Lag order = 12, p-value = 0.01 
alternative hypothesis: stationary 

In the Johansen test a cointegrating vector determines the number of shares 
(positive or negative) in the portfolio (i.e., spread). To buy or sell the spread, an 

https://www.statisticshowto.com/reliability-validity-definitions-examples/
https://www.statisticshowto.com/maximum-likelihood-estimation/
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investor longs or shorts the assets by the number of shares suggested by the 
cointegrating relationships. 

The dynamics of a stationary portfolio of 3 currencies is illustrated below, Figure 9:  

 

Figure 9 Dynamic of a portfolio of BTC, ETH and USDT 

Source: author’s estimates in R using the data of Yahoo finance 
   In a stationary process mean and variance remain constant over time. Any 
deviation from these expected values is a case for statistical abnormality, and hence is 
the case for pairs trading. 

Investors can profit from purchasing this stationary portfolio when its price is low 
and get a profit when its price returns to the mean or crosses above a certain level. 
Similarly, an investor can short sell the spread when its price is high and get a profit 
when price reverts to the mean or crosses below a certain threshold.  

Pairs trading with cointegrated assets permit to mitigate the potential losses and 
risks, since if one asset is underperforming, the other(s) may absorb the losses. It 
means, that regardless of the market conditions, a trader can get positive returns 
whenever price of one stock deviates from the mean. Hedging is realized by selling the 
overvalued security and purchasing the undervalued security, thereby, limiting the 
chances of loss. 
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1.10. Analysis of Long-Run Volatility Spillovers with GARCH-DCC 

Model  

The volatility spillover models are widely used for the analysis of dynamic 
linkages among stocks since these models describe a shock’s impact of one variable to 
another through the error terms. The volatility forecasting permit to estimate swings 
in cryptocurrency prices and log returns, which is useful for developing quantitative 
financial trading strategies, such as pairs trading that involves opening a simultaneous 
long and short positions on two crypto pairs. A pairs trading strategy is implemented 
based on the correlation between two pairs.  

The volatility spillover model applied here is the multivariate GARCH model with 
dynamic conditional correlations (GARCH DCC), Engle and Sheppard (2001). The 
GARCH model is a continuation of the autoregressive conditional heteroscedasticity 
(ARCH) model that supports the conditional variance to change over time as a function 
of past errors leaving the unconditional variance constant (Bollerslev 1986). This type 
of model was selected because of the relatively easy parameters estimation and 
interpretation of results, in contrast with, for example BEKK-GARCH model. The main 
advantage of GARCH-DCC is that the number of parameters that are estimated in the 
correlation process are independent on the number of series that are to be estimated, 
so it gives a large computational advantage when estimating large covariance matrices 
(Engle 2002).   

 The idea of the models in this class is that the covariance matrix, 𝐻𝑡 , can be 

decomposed into conditional standard deviations, 𝐷𝑡 , and a correlation matrix, 𝑅𝑡 . 

In the DCC-GARCH model both 𝐷𝑡  and 𝑅𝑡  are designed to be time-varying. The model 
equations can be specified as follows: 

𝑟𝑡 = 𝜇𝑡 + 𝛼𝑡    (6) 

𝑎𝑡 = 𝐻𝑡
1/2

𝑧𝑡     (7) 

𝐻𝑡 = 𝐷𝑡 𝑅𝑡 𝐷𝑡  (8) 

where 𝑟𝑡 is a nx1 vector of log returns of n assets at time t; 

𝑎𝑡 is a nx1 vector of mean-corrected returns of n assets at time t; E[𝑎𝑡]=0, Cov[𝑎𝑡]=𝐻𝑡 ; 

𝜇𝑡 is a nx1 vector of the expected value of the conditional 𝑟𝑡 ; 

𝐻𝑡 is a nxn matrix of conditional variances  𝑎𝑡 at time t; 
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𝐻𝑡

1

2 may be obtained by a Cholesky factorization of 𝐻𝑡 ; 

𝑅𝑡 is a nxn conditional correlation matrix of 𝑎𝑡 at time t; 

𝑧𝑡 is a nx1 vector of iid errors such that E[𝑧𝑡]=0, E[𝑧𝑡𝑧𝑡
𝑇]=I; 

𝐷𝑡 is a nxn matrix of conditional standard deviations of  𝑎𝑡 at time t; 

For the best model fit, MGARCH-DCC models were tailored specially for each 
cryptocurrency for the purpose of the best fit. The model was run on the log returns 
of each cryptocurrency. Different model settings were tested, and the best were 
selected based on the AIC information criteria, Table 12. 

Table 12 The MGARCH-DCC models characteristics 

 BTC ETH USDT 

 univariate GARCH specification 
variance model sGARCH sGARCH eGARCH 

 mean model  armaOrder = 
c(1,0), include 

mean 

armaOrder = 
c(1,0), include 

mean 

armaOrder = 
c(1,0), include 

mean 
distribution model sged sstd sstd 

 DCC-GARCH specification 

multivariate 
distribution 

mvt mvt mvt 

The DCC autoregressive 
order 

(1,1) (1,1) (1,1) 

Source: author’s estimates in R using the data of Yahoo finance  

In the multivariate GARCH-DCC models that were built, both alpha1 and beta1 

(the ARCH and GARCH coefficients) are jointly significant, and  dcca1 and dccb1 (the 

short and long run persistence indicators) are jointly significant too, which means that 

the models are well fit to the data, Table 13.  

Table 13 Results of GARCH-DCC modelling 

*---------------------------------* 
*          DCC GARCH Fit          * 
*---------------------------------* 
Distribution         :  mvt 
Model                :  DCC(1,1) 
No. Parameters       :  28 
[VAR GARCH DCC UncQ] : [0+22+3+3] 
No. Series           :  3 
No. Obs.             :  1826 
Log-Likelihood       :  17607.09 
Av.Log-Likelihood    :  9.64  
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Optimal Parameters 
----------------------------------- 
               Estimate  Std. Error    t value Pr(>|t|) 
[BTC].mu      -0.000108    0.000002  -45.02670 0.000000 
[BTC].ar1     -0.076700    0.002852  -26.89616 0.000000 
[BTC].omega    0.000026    0.000004    7.17055 0.000000 
[BTC].alpha1   0.080240    0.007732   10.37788 0.000000 
[BTC].beta1    0.907654    0.006976  130.11087 0.000000 
[BTC].skew     0.966741    0.008528  113.36285 0.000000 
[BTC].shape    0.882343    0.038643   22.83297 0.000000 
[ETH].mu       0.000697    0.000987    0.70652 0.479867 
[ETH].ar1     -0.069290    0.021259   -3.25934 0.001117 
[ETH].omega    0.000177    0.000063    2.81541 0.004871 
[ETH].alpha1   0.133915    0.030149    4.44174 0.000009 
[ETH].beta1    0.828894    0.036943   22.43687 0.000000 
[ETH].skew     0.979882    0.027997   34.99954 0.000000 
[ETH].shape    3.331902    0.125382   26.57395 0.000000 
[USDT].mu      0.000005    0.000004    1.53320 0.125227 
[USDT].ar1    -0.343100    0.027819  -12.33314 0.000000 
[USDT].omega  -0.086651    0.007419  -11.68029 0.000000 
[USDT].alpha1  0.147751    0.016594    8.90383 0.000000 
[USDT].beta1   0.993834    0.000258 3847.62260 0.000000 
[USDT].gamma1  0.294172    0.013192   22.30009 0.000000 
[USDT].skew    1.056677    0.027530   38.38271 0.000000 
[USDT].shape   3.093494    0.152846   20.23928 0.000000 
[Joint]dcca1   0.026751    0.007170    3.73099 0.000191 
[Joint]dccb1   0.964729    0.011369   84.85643 0.000000 
[Joint]mshape  4.000000    0.337457   11.85336 0.000000 
 
Information Criteria 
--------------------- 
Akaike -19.254 Bayes -19.170 Shibata -19.255 Hannan-Quinn -19.223 

Source: author’s estimates in R using the data of Yahoo finance  

Results of MGARCH-DCC modelling revealed significant positive historical 

correlation between BTC and ETH log returns along the model horizon, as can be seen 

in  

Figure 10: 
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Figure 10 Conditional correlations between the log returns of Bitcoin, Ether and 
Tether 

Source: author’s estimates in R using the data of Yahoo finance  

Even though the discrepancies between Bitcoin and Ethereum were significant 

in 2018, they have subsequently evened out. Historically ETH and BTC had high positive 

correlations which makes them the good candidates for the pairs trading. High positive 

correlation is the main driver behind the strategy’s profits. Relying on the historical 

notion that the two securities will maintain a specified correlation, the pairs trade is 

effectuated when this correlation changes. When pairs deviate, a trader would take 

the long position in the underperforming security and sell short the outperforming 

security. When both pairs return to their historical correlation, profits are made from 

price convergence when the underperforming security regains its value and the 

outperforming security’s price deflates. In such manner the disparities between the 
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performance of BTC and ETH cryptocurrencies can be used for creating long and short 

orders. Since USDT does not have a significant correlation neither with Bitcoin nor with 

Tether ( 

Figure 10), as a stablecoin, it can be used as a base currency that indicates the 
value of a crypto compared to USD or EURO. 

 For the log returns of other cryptocurrency pairs were observed insignificant 

positive or negative correlations. However, during the market crush in 2020 the 

correlations between ETH and USDT log returns and between BTC and USDT log 

returns became significantly negative. During the same period correlation between 

BTC and ETH log returns experienced a positive spike since prices of these two 

currencies have similar trends. That means that BTC and ETH react in a similar way to 

the external stimuli, while USDT reacts differently from BTC and ETH to the external 

shock (see  

Figure 10), therefore, USDT is a good candidate for the portfolio diversification 
and hedging. 

As for the long-run covariations, they are generally low positive between BTC 
and ETH log returns, and close to zero between the other pairs of cryptocurrencies. 
Only during the market crush in March 2020, a strong positive spike is observed in 
covariation between BTC and ETH log returns. During the same period, strong drop 
occurred between ETH and USDT log returns, and also between BTC and USDT log 
returns, which means that USDT reacts differently to an external shock than BTC and  
ETH do,  
Figure 11: 
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Figure 11 Conditional covariations between the log returns of Bitcoin, Ether and 
Tether 

Source: author’s estimates in R using the data of Yahoo finance  

Summing up the first chapter, statistical tests conducted in R demonstrated that 
the three mainstream cryptocurrencies are highly non-linear, non-stationary with high 
degrees of autocorrelation, long memory, structural breaks and the first order of 
integration. Seasonal effects were not detected. Volatility of these cryptocurrencies 
exhibits clustering and has varied considerably over time.  

Being a stable coin, price trajectory of USDT is characterized by a high frequency 
of oscillations of different amplitude around the mean. Although BTC and ETH were 
created in a different time and in a different manner, their prices follow quite similar 
predominantly rising trend of different magnitude.  

The multivariate Granger causality test conducted in first differences of adjusted 
close prices demonstrated that ETH can be used in prediction of BTC and USDT, while 
USDT can be used for the prediction of ETH and BTC. 

The forecast error variance decomposition gave evidence that the stationarized 
prices of Bitcoin and USDT are predominantly influenced by their own past values and 
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are largely insensitive to the variations in other cryptocurrencies. In contrast, about 
40% of the variation in stationarized ETH prices came from the shocks to ETH itself and 
the remaining 60% originated from BTC perturbations.  

The long-run dynamic volatility spillovers investigated with the multivariate 
GARCH-DCC model revealed significant positive conditional correlations between BTC 
and ETH log returns along the forecasting period of 2018-2023. For the other pairs of 
cryptocurrencies were observed the fluctuating small positive and negative conditional 
correlations with dominance of positive values. High historical correlations between 
Bitcoin and Ether make them good candidates for pairs trading; in both pairs USDT can 
be used as a base currency indicating the value of the crypto compared to USD. 
Besides, USDT can be used for diversifying a portfolio consisting of BTC or ETH 
cryptocurrencies.   

Johansen Cointegration test conducted in this study permitted to devise a 
stationary dynamic portfolio consisting of a certain number of Bitcoin, Ether and 
Tether shares suggested by a cointegrating vector. Investors can profit from 
purchasing this stationary portfolio when price is low and get a profit when its price 
returns to the mean or crosses above a certain level. Similarly, an investor can short 
sell the spread when its price is high and get a profit when price reverts to the mean 
or crosses below certain threshold. 

In case of trading the individual cryptocurrencies, pairs trading or portfolio 
trading profits depend on the correctness of forecasted price moves. Forecasting 
models permit to predict cryptocurrency prices, helping investors to increase their 
profits. Considering high volatility of cryptocurrency markets, even small increases in 
model’s precision can generate large profits to investors. The next chapter is dedicated 
to the determination of the most accurate price forecasting method for each 
cryptocurrency.  
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Chapter 2. Prediction of Cryptocurrencies Prices with Machine 
Learning Models 

Predicting the evolution of cryptocurrency prices is a challenging task due to their 
nonlinearity, uncertainly and high volatility. 

Various factors like public regulation of crypto markets, inflation, interest rate, 
technological developments such as improvements in blockchain technology, security 
concerns, institutional interest, high profile support, competition from other 
cryptocurrencies, and market sentiment along with the past trends combine to make 
the cryptocurrency markets very volatile. This makes it difficult to predict the future 
market scenarios with a high level of accuracy.   

The possible solution lies in incorporating the machine learning techniques that 
are known to frequently perform better than the traditional time series forecasting 
methods. The machine learning algorithms study the data, discover a pattern in the 
past values, extrapolate the trend and predict the expected prices.  

To combine the classic and machine learning approaches on financial time series 
forecasting, this work proposes a Hybrid ARIMA-Random Forest, Hybrid Arima-SVR and 
a Hybrid Arima-LSTM models were developed. The hybrid combination is expected to 
be successful since it permits decomposition of time series in linear and nonlinear 
trends that can be forecasted separately. According to this approach, linear part is 
predicted with ARIMA, and non-linear part, i.e., residuals of an ARIMA model, are 
forecasted with machine learning models that are known to outperform the traditional 
models in capturing nonlinear relationships. Consecutively, the combination of the two 
types of models should encompass with high accuracy both linear and nonlinear 
tendencies of the time series in the hybrid framework. An approach to establish a 
hybrid framework between ARIMA and neural networks approach was firstly proposed 
by Zhang (2003). Afterwards his idea was replicated in a number of studies that 
combined ARIMA with different ML models (e.g., Siami‐Namini & Namin,2018, and 
Kumar et al, 2014).  

Following the approach of Zhang (2003), the time series predictions with the 

Hybrid model (Prediction𝑡
𝐻𝑦𝑏𝑟𝑖𝑑

) were made by linearly combining the linear 

(Linear𝑡
𝐴𝑅𝐼𝑀𝐴) and non-linear (Nonlinear𝑡

𝐿𝑆𝑇𝑀) components predicted by ARIMA and 
LSTM model: 

Prediction𝑡
𝐻𝑦𝑏𝑟𝑖𝑑

= Linear𝑡
𝐴𝑅𝐼𝑀𝐴 + Nonlinear𝑡

𝐿𝑆𝑇𝑀  (9) 

  
This way, the differences between the actual and predicted with ARIMA stock 

prices, i.e. the residuals act as training data for the ML models.  
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For all models used for the time series prediction, the split between the testing 
and training data was set equal to 19%5.  

It is important to emphasize that descriptive statistics of training data 
significantly differs from that of testing data. This is especially evident in case of USDT 
data, where test data have much lower variance, excess kurtosis, and different sign of 
skewness as compared with training data. Therefore, ML models may have difficulties 
with predicting testing data that are very different from the data the model was 
trained on.  

Table 14 Descriptive statistics of training and testing data 

 Training  Testing  Training  
Testing  

Training  Testing  

BTC ETH USDT 

Mean    -0.047 0.258 -0.091 0.490 0.053 -0.301 

Variance 1.129 0.258 1.082 0.305 1.163 0.013 

Standard Deviati
on           

1.063 0.508 1.040 0.552 1.079 0.112 

Skewness  1.094 1.229 1.358 1.297 0.646 -1.995 

Excess Kurtosis   -0.352 0.252 0.509 0.447 12.498 7.299 

Source: author’s estimates in R using the data of Yahoo finance  

2.1  Selection of Error Measures for Model Comparison  

Among the error measures that are applied for the evaluation of models’ 
predictive capacity the most popular are the Mean Absolute Error (MAE), the Mean 
Squared Error (MSE) and the Root Mean Square Percentage Error (RMSPE). 

The formulas for MAE and MSE are given as follows:   

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖̅−𝑦𝑖|

𝑛
𝑖=1 ,   

 

(10) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑛

𝑖=1
, (11) 

where 𝑦𝑖  are the observed values and 𝑦𝑖̅ are the predictions. 
Apart from the evident simplicity, the standard measures of error measurements such 
as MAE and MSE both are scale dependent, and, therefore may produce biased 

 
5 Such split was necessary for the LSTM models, where the batch size must be evenly divisible in both the training and 
testing lengths. For the consistency of research, the same 19% split between the training and testing data was used for 
all models.  
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estimates, if compared between ARIMA model that uses as an input series of 
cryptocurrencies prices and machine learning models that use as an input the residuals 
generated by ARIMA model, Hyndman, R.J. and A.B. Koehler (2006). 

Percentage errors such as MAPE (Mean Absolute Percentage Error) and RMSPE 
(Root Mean Square Percentage Error) have the advantage of being scale independent, 
since they are normalized by true observations, 𝑦𝑖: 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦𝑖 − 𝑦𝑖̅|

𝑦𝑖

𝑛

𝑖=1

, 

 
(12) 

 𝑅𝑀𝑆𝑃𝐸 = 100 ∑
1

𝑛

|𝑦𝑖 − 𝑦𝑖̅|

𝑦𝑖

𝑛

𝑖=1

 

 
(13) 

However, these measurements can get infinite or undefined values if the true 
observation is zero or close to zero. The MAPE has another disadvantage: it puts a 
heavier penalty on positive errors than on negative errors.  

R-Squared, the coefficient of determination, is the square of correlation. It 
measures the proportion of the variance in the response variable that can be explained 
by the predictor variables in the model. When comparing multiple models or selecting 
the most appropriate model for a specific purpose, R-squared can be useful as it 
provides a standardized metric that ranges from 0 to 1. The closer to 1 the value of R-
Squared, the better is the regression model as most of the variation of actual values 
from the mean value get explained by the regression model. If the dataset contains 
outliers or extreme values that might disproportionately affect the model’s 
performance, R-squared can be a good metrics, since it is less sensitive to outliers. 
However, R-squared can become negative for the test dataset if squared errors are 
greater than total sum of squares.  

The Mean absolute scaled error (MASE) is a measure for determining the 
effectiveness of forecasts generated through an algorithm by comparing the 
predictions with the output of a naïve, or random-walk forecasting approach.  MASE 
value greater than 1 indicates the algorithm is performing poorly compared to the 
naïve forecast. The lower the MASE value, the lower the relative absolute forecast 
error, and the better the method. MASE is defined as: 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑

|𝑦𝑖 − 𝑦𝑖̅|

1
𝑛 − 1

∑ |y𝑘
𝑛𝑎𝑖𝑣𝑒 − y𝑘−1

𝑛𝑎𝑖𝑣𝑒̅̅ ̅̅ ̅̅ ̅̅ |𝑛
𝑘=2

=
𝑀𝐴𝐸

𝑀𝐴𝐸𝑛𝑎𝑖𝑣𝑒

𝑛

𝑖=1

, 

 

 
 

(14) 

 

https://ecosia.org/search?q=rmspe+root+mean+square+percentage+error
https://ecosia.org/search?q=rmspe+root+mean+square+percentage+error
https://www.statology.org/explanatory-response-variables/
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where the denominator is the mean absolute error of the one-step "naive forecast 
method" on the training set which uses the actual value from the prior period as the 

forecast y𝑘−1
𝑛𝑎𝑖𝑣𝑒̅̅ ̅̅ ̅̅ ̅̅ . MASE is scale-independent, symmetric and does not suffer from the 

division by zero problem. Hyndman and Koehler (2006) recommend that the MASE 
becomes the standard when comparing forecast accuracy.   

Taking into account the advantages and the shortcomings of the error measures,  
R-squared and MASE are used to determine models’ goodness-of fit to the data and to 
compare models’ performance.  

2.2 Prediction of cryptocurrencies prices with ARIMA 

After establishing the possible linkages between the crypto coins, 
cryptocurrency prices were forecasted with the Autoregressive Integrated Moving 
Average (ARIMA) model that serves as a benchmark for the comparison with the 
machine learning models. 

This model and its extensions have been widely studied and applied for time 
series forecasting. ARIMA models are quite flexible in that they can represent several 
different types of time series, i.e., pure autoregressive (AR), pure moving average (MA) 
and combined AR and MA (ARIMA) series (Box, Jenkins and Reinsel, 2008). 

ARMA(𝑝, 𝑞) model can be expressed with the following equation:   

𝑥𝑡 = 𝑎 + ∑ 𝜑𝑖
𝑝
𝑖=1 𝑥𝑡−𝑖 − ∑ 𝜃𝑗

𝑞
𝑗=1 𝜀𝑡−𝑗 + 𝜀𝑡   (15) 

In this equation the  AR(p) part of the model (i. e. ∑ 𝜑𝑖
𝑝
𝑖=1 𝑥𝑡−𝑖 ) describes the time 

series 𝑥𝑡 at time 𝑡 as a linear regression of the previous 𝑝 observations, where 𝜀𝑡 is the 
white noise residual term and 𝜑𝑖 are the AR coefficient. The MA(𝑞) part of the model 

(i. e. ∑ 𝜃𝑗
𝑞
𝑗=1 𝜀𝑡−𝑗 + 𝜀𝑡) uses dependency between residual errors to forecast values in 

the next period, where 𝛼 is the intercept and 𝜃𝑖 is the MA coefficient.  
The complete ARIMA model is a generalization of the ARMA model by including 

integrated components, that are useful when the data are non-stationary. The ARIMA 
(𝑝, 𝑑, 𝑞) represent the integration order for AR, MA, and differencing components. The 
model is well recognized for its forecasting accuracy. However, as a linear model, 
ARIMA encountered several limitations with non-linear problems.               

The ARIMA model built in this study was based on the “one-step forecasts 
without re-estimation” approach of “Rolling Forecasting Origin” proposed by 
Hyndman (2014), Hyndman and Athanaspoulos (2014). According to this approach, 
when evaluation of a single set of training data is completed, the rest of data set one-
step forecasts are generated. 
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In contrast, with “Multi-step forecasts with re-estimation” the model is 
reconstructed each time when a new observation is added to the training set , so that 
a “walk-forward model validation” is run. 

 An auto.arima function was applied to determine the best model fit for the 

cryptocurrencies under study. This function returns the best fit ARIMA model 

according to either AIC, AICc or BIC value. The auto.arima makes the dataset stationary 

and runs a search over possible model within the order constraints.6 

As shown in Figure 12 below, ARIMA model has a close fit to the data with almost 

unitary R2 both with training and testing predictions in BTC price forecasting:  

 
Model  
performance 

R2  Training:                       0.9967  
R2 Test:                                   0.9907      
MASE Training:            0.99765 
MASE Test:                          1.00566     

Figure 12 BTC price forecasting with ARIMA (1,1,0) model 

Source: author’s estimates in R using the data of Yahoo finance  

 
6 https://www.rdocumentation.org/packages/forecast/versions/8.21/topics/auto.arima 
In this study were taken into account the possible issues caused by severe overparameterization, which might happen 
with tools such as auto.arima 

https://www.rdocumentation.org/packages/forecast/versions/8.21/topics/auto.arima
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As shown in Figure 14, the ARIMA model presents high accuracy for the ETH 

price prediction both with training and testing sets of data with R2 exceeding 98%:  

 
Model  
performance 

R2        Training:               0.9959 
R2        Test:                      0.98666 
MASE  Training:               0.98698 
MASE Test:                       1.00393 

Figure 13 ETH price forecasting with ARIMA (2,1,2) model 

Source: author’s estimates in R using the data of Yahoo finance  

Nevertheless, the ARIMA model has poor performance with the USDT data, 
especially in the training predictions. This outcome can be explained by much higher 
oscillations during the period that was selected for training when compared with the 
testing period in Figure 14: 
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Model  
performance 

R2    Training:          0.55607 
R2    Test:                 0.71598 
MASE  Training:            0.87267 
MASE  Test:                   1.11748 

Figure 14 USDT price forecasting with ARIMA (2,1,3) model 

Source: author’s estimates in R using the data of Yahoo finance   

Even though ARIMA had quite good values of MASE on a training set, that does 
not mean that ARIMA had good performance on training data, but that the naïve 
method of forecasting would perform worse than ARIMA, Figure 14. 

As shown in Table 15,BTC, ETH and USDT residuals from all Arima models are 
most probably a white noise process as they can be represented with an ARIMA(0,0,0) 
function.  
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Table 15 Residuals from ARIMA model cryptocurrency price prediction 

Series: residualsBTC 
ARIMA(0,0,0) with zero mean 

sigma^2 = 1006711:  log likelihood = -15727.11 

AIC=31456.22   AICc=31456.23   BIC=31461.77 

Series: residualsETH 
ARIMA(0,0,0) with zero mean 

sigma^2 = 6279:  log likelihood = -10580.88 
AIC=21163.75   AICc=21163.76   BIC=21169.26 

Series: residualsUSDT 
ARIMA(0,0,0) with zero mean 

sigma^2 = 0.00001145:  log likelihood = 7800.88 
AIC=-15599.76   AICc=-15599.76   BIC=-15594.25 

Source: author’s estimates in R using the data of Yahoo finance  

2.3  Prediction of Cryptocurrencies Prices with Random Forest Models  

Random Forest Regression is a supervised learning algorithm (Ho,1995). These 
models are considered powerful and accurate forecasting tools. They usually perform 
well on large data series with non-linear relationships, handle well interactions and 
outliers. Random Forests use ensemble learning technique that combines predictions 
from multiple machine learning algorithms to make a more accurate prediction than a 
single model. In other words, a Random Forest model operates by constructing several 
decision trees during training phase and outputs the mean of the classes as the 
prediction of all trees. That means that in a regression problem, the range of 
predictions a Random Forest can make is bound by the highest and lowest labels in the 
training data. This behavior can become problematic when the training and prediction 
inputs differ in their range and/or distributions. This is called covariate shift and it is 
difficult to handle for the most of models. 

Random Forest algorithm operates through the following steps: 
1. Randomly picks k data points from the training set. 
2. Builds a decision tree associated with these k data points. 
3. Chooses the number N of trees to build and repeat the two previous steps. 
4. For a new data point, one of the N-tree trees predicts the value for the data 

point in question and assigns the new data point to the average across all of 
the predicted y values. 

In this exercise, Random Forest models were run with respect to the following 
technical indicators as features: 
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− day-, 10 day- and 20 day- Simple Moving Average (SMA5day,SMA10day and 
SMA20day, correspondingly). This indicator calculates the average of a selected 
range of prices, usually closing prices, by the number of periods in that range; 

− 5 day-, 10 day- and 20 day- Exponential Moving Average (correspondingly, 
EMA5day,EMA10day and EMA20day). This indicator is similar to Simple Moving 
Average (SMA), measuring trend direction over a period of time, however, EMA 
gives  more weight to the recent data; 

− 14 day -Relative Strength Index (RSI14day)calculates average price gains and 
losses over a given period of time; 

− 2 day -Price Rate of Change (Roc2day) is a momentum-based technical 
indicator that measures the percentage change in price between the current 
price and the price a certain number of periods ago; 

− 2 day-day Momentum (Momentum2day) is a difference between the current 
closing price and a closing price "n" periods ago. 

Random Forest is known to handle well interactions, which means that correlations 
among the technical indicators are not expected to affect the model performance. 
To construct technical indicators, the start date of all time series was shifted to 
November 1, 2017.   

The architecture of the Random forest models is provided below, Table 16:  

Table 16 Architecture of Random Forest models:  

ntree number of trees grown  500(BTC, ETH,USDT) 

mtry  number of predictors sampled for 
splitting at each node 

3 (BTC, ETH),9 (USDT) 

R Package 
used 

 Caret(BTC, ETH,USDT) 

Source: author’s estimates in R using the data of Yahoo finance  

With overall good model performance (Figure 15), Random Forest model yields 

a bit higher accuracy of BTC price predictions with training data and a bit lower 

accuracy with test data: 
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Model  
performance 

R2     Training:  1 
R2     Test:        0.926 
MASE Training:  0.201 
MASE Test:        3.292 

Figure 15 BTC Price Forecasts with Random Forest model  

Source: author’s estimates in R using the data of Yahoo finance  

Despite the high values of R2 in the test set predictions of BTC, the MASE 

measure amounts to 3.29. This does not undermine the predictive capacity of the 

Random Forest model, such high values of MASE indicate that naïve approach would 

give better results than Random Forest on a test set of data (or on a part of it), see  

Figure 15. 

Figure 16 shows that Random Forest model yields high accuracy of ETH price 

predictions both with training and test data:  
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Model  
performance 

R2      Training: 1 
R2      Test:        0.99 
MASE Training: 0.191 
MASE Test:        0.955 

Figure 16 ETH Price Forecasts with Random Forest model 

Source: author’s estimates in R using the data of Yahoo finance  

Performance metrics on Figure 17  show that the Random Forest model has 99% 

accuracy on ETH price predictions with training data (R2 metrics) and lower accuracy 

of 68% (R2 metrics) with test data:  
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Model  
performance 

R2      Training:  0.990 
R2       Test:        0.675 
MASE Training: 0.108 
MASE Test:        4.493 

Figure 17 USDT Price Forecasts with Random Forest model  

Source: author’s estimates in R using the data of Yahoo finance  

 

2.4 Prediction of Cryptocurrencies Prices with Hybrid ARIMA-Random 

Forest Models  

The Hybrid ARIMA-Random Forest model developed in this study permits 
separate forecasting of linear trends with Arima modelling and of nonlinear trends 
with Random Forest modelling. The differences between the actual and predicted with 
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ARIMA stock prices (shown on Figure 12−Figure 14), i.e. the residuals act as training 
data for the Random Forest model. The architecture of Random Forest model was kept 
the same as was described in Table 16.  
Figure 18 illustrates the fact that Random Forest model has high performance with 
training data and very low accuracy with test data when forecasting BTC residuals of 
ARIMA model. Such low performance can be explained by the fact that BTC residuals 
have a high frequency of oscillations with rapid changes in amplitude: 

 
Model  
performance 

R2      Training:  0.987 
MASE Training: 0.063 
R2       Test:        0.948 
MASE Test:        0.142 

Figure 18 Prediction of BTC residuals from ARIMA with the Random Forest model 

Source: author’s estimates in R using the data of Yahoo finance    

As shown on Figure 19, the Random Forest model has almost unitary accuracy 
of BTC price prediction, both with training and test data:  



61 
 

 

Model  
performance 

R2       Training: 1 
MASE Training: 0.094 
R2      Test:         0.999 
MASE Test:         0.233 

Figure 19 Prediction of BTC Adjusted Close Prices with the Hybrid ARIMA-Random 
Forest model 

Source: author’s estimates in R using the data of Yahoo finance  

The Random Forest model has a good accuracy of predicting ETH residuals from 
ARIMA both with training and test data (Figure 20): 
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Model  
performance 

R2     Training: 0.981 
R2     Test:       0.947 
MASE Training: 0.067 
MASE Test:       0.154 

Figure 20 Prediction of ETH residuals from ARIMA with the Random Forest model 

Source: author’s estimates in R using the data of Yahoo finance  

As shown on Figure 21 the Random Forest model has almost unitary accuracy of 
ETH price prediction both with training and test data: 



63 
 

 

Model  
performance 

R2     Training: 1 
R2     Test:       0.999 
MASE Training:  0.096 
MASE Test:       0.222 

Figure 21 Prediction of ETH Adjusted Close Prices with the Hybrid ARIMA-Random 
Forest model 

Source: author’s estimates in R using the data of Yahoo finance  

The Random Forest model has poor accuracy of predicting USDT residuals from 
the ARIMA model with test data and a high accuracy with training data, since the latter 
are much more linear than the former (Figure 22): 
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Model  
performance 

R2      Training: 0.977 
R2      Test:      - 0.122 
MASE Training: 0.076 
MASE Test:        1.756 

Figure 22 Prediction of USDT residuals from ARIMA with the Random Forest model 

Source: author’s estimates in R using the data of Yahoo finance  

The hybrid ARIMA-Random Forest model has almost 99% accuracy of USDT price 

prediction on train data and almost 70% accuracy with test data (Figure 23): 
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Model  
performance 

R2      Training:  0.989 
R2      Test:         0.692 
MASE Training: 0.093 
MASE Test:        1.991 

Figure 23 Prediction of USDT prices with Hybrid ARIMA-Random Forest model 

Source: author’s estimates in R using the data of Yahoo finance  

The above result is the clear illustration of higher performance of the hybrid 
framework as compared with individual models, see Figure 14 and Figure 17.  
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2.5 Prediction of Cryptocurrencies Prices with Support Vector Regression 

Models  

Support Vector Regression (SVR) models work on similar principles as Support 
Vector Machine (SVM) classification but predicts real values rather than classes. The 
basic idea behind SVR (Vapnik, 1995) is to find a function that has at most ε deviation 
from the actually obtained targets for all the training data, and at the same time is as 
flat as possible. In other words, SVR does not care about errors as long if they are less 
than ε, but it will not accept any deviation larger than this. A major benefit of using 
SVR is that it is a non-parametric technique, which means that its output does not 
depend on distributions of the dependent and independent variables. Instead, the SVR 
technique depends on kernel functions that are used to map the original input data 
points into higher dimensional feature spaces. The most used kernel transformations 
are polynomial kernel and radial kernel. This way an hyperplane can be found out even 
if the data points are not linearly separable in the original input space. The hyperplane 
is defined by the observations that lie within a margin optimized by a cost 
hyperparameter. These observations are called the support vectors. Margin is the 
distance between the support vector and hyperplane, and support vectors are the 
closest data points to the hyperplane. Hereby, margin maximization and 
misclassification fines are balanced by the regularization cost parameter, low values of 
which penalize samples inside the margins less than its higher values. Higher values of 
cost parameters can be used to penalize regression in order to avoid over fitting.   

In this research for each cryptocurrency SVR models were cross-validated and 

tuned with respect to the alternative types of kernel functions and the values of 

hyperparameters. Performance of Linear Kernel, Polynomial Kernel and Radial Basis 

Function (RBF) Kernel were tested. The lowest RMSE were provided by the Support 

Vector Machines with Radial Basis Function Kernel (method = 'svmRadialSigma' of the 

caret package of R) that tunes over the alternative values of  cost parameter and the 

RBF kernel parameter sigma. RBF kernel can be mathematically represented with the 

following formula: 

 𝐾(𝑥, 𝑥𝑘) = exp (
−‖𝑥𝑘−𝑥𝑙‖2

𝜎2 ), (16) 

 

where σ is the variance hyperparameter and ‖𝑥𝑘 − 𝑥𝑙‖ is the Euclidean distance 
between two points 𝑥𝑘  and 𝑥𝑙. 

Cost parameter controls the flexibility of the model and its ability to work with 
unseen data. Large values of the cost parameter lead to the smaller margins and less 
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flexible model, which increases the possibility of model overfitting. In contrast, small 
values of the cost parameter lead to larger margins and higher level of 
misclassification, which can also result in poor model performance.  

In the case of RBF kernels the sigma parameter that determines the bandwidth 
of kernel function must be tuned. The sigma parameter controls the level of non-
linearity introduced in the model. If the sigma value is low, the SVM algorithm would 
ignore the points that are far from the decision boundary. Large values of sigma permit 
the SMV to consider the data points that are far from the decision boundary, thus 
increasing the level of non-linearity of the model.  

In this exercise Support Vector Regressions were run with respect to the number 
of observation as a predictor.   

After running many rounds of cross validation and tuning for each 
cryptocurrency, the final architecture of SVR for each cryptocurrency is listed in Table 
17. 

Table 17 Architecture of SVR models:  

BTC 

Method svmRadial (Support Vector Machines with Radial Basis 
Function Kernel) 

Sigma  110 (tested for the values from 0.1 to 150) 

Cost 40  (tested for the values from 0.1 to 256) 

ETH 
Method svmRadial (Support Vector Machines with Radial Basis 

Function Kernel) 
Sigma  120 (tested for the values from 0.1 to 150) 

Cost 40 (tested for the values from 0.1 to 256) 
USDT 

Method svmRadial (Support Vector Machines with Radial Basis 
Function Kernel) 

Sigma  110 (tested for the values from 0.1 to 300) 
Cost 40 (tested for the values from 0.1 to 256) 

The R2 performance metrics on Figure 24 manifests quite high predictive 
capacity of SVR model for BTC prices, although this model visibly had difficulties with 
capturing the spikes of the test data set: 
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Model  
performance 

R2       Training:  0.9904 
R2       Test:          0.863 
MASE Training:  2.472 
MASE Test:         4.4537 

Figure 24 Prediction of BTC prices with SVR  model 

Source: author’s estimates in R using the data of Yahoo finance  
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SVR model quite moderate accuracy of ETH price predictions on test data, as 
shown by performance metrics on Figure 25:  

 
 

Model  
performance 

R2       Training:  0.9876 
R2       Test:         0.6463 
MASE Training:  2.7457 
MASE Test:         6.1816 

Figure 25 Prediction of ETH prices with SVR  model 

Source: author’s estimates in R using the data of Yahoo finance  
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It was already noted in case of BTC and ETH forecasting, that the SVR model had 
difficulties with capturing the data with high frequency and large magnitude of 
oscillations. This observation becomes especially evident with the poor capacity of SVR 
in predicting the highly oscillating USDT prices, see Figure 26:  

 

Model  
performance 

R2       Training:  0.5647 
R2       Test:         0.1238 
MASE  Training: 0.8135 
MASE  Test:        14.8688 

Figure 26 Prediction of USDT prices with SVR  model 

Source: author’s estimates in R using the data of Yahoo finance  
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2.6 Prediction of Cryptocurrencies Prices with Hybrid ARIMA-SVR Models  

As illustrated on Figure 27, SVR has very low accuracy of forecasting BTC residuals from 

the ARIMA model. These residuals are characterized of high frequency and high 

magnitude of oscillations, that are evidently are difficult to capture for a SVR model: 

 

Model  
performance 

R2       Training: 0.031 
R2       Test:       -0.1946 
MASE Training: 0.6544 
MASE Test:         0.7414 

Figure 27 Prediction of BTC residuals from ARIMA with the SVR model 

Source: author’s estimates in R using the data of Yahoo finance  

Nevertheless, the Hybrid Arima-SVR model (Figure 28) has almost unitary 
accuracy (in terms of R2 ) of BTC price prediction:   
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Model  
performance 

R2      Training:             0.99679 
R2      Test:                    0.98806 
MASE Training:              1.00848 
MASE Test:                     1.1448 

Figure 28 Prediction of BTC prices with Hybrid ARIMA-SVR  model 

Source: author’s estimates in R using the data of Yahoo finance  

As illustrated on Figure 29, in terms of R2 indicator, SVR has very low accuracy 
of forecasting ETH residuals from the ARIMA model:  
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Model  
performance 

R2     Training:  0.0301 
R2     Test:        0.0280 
MASE Training: 0.6761 
MASE Test:        0.7244 

Figure 29 Prediction of ETH residuals from ARIMA with the SVR model 

Source: author’s estimates in R using the data of Yahoo finance  

 

Nonetheless, the Hybrid Arima-SVR model (Figure 30) has almost unitary 
accuracy of ETH price forecasting, in terms of R2: 
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Model  
performance 

R2   Training:                 0.99594 
R2   Test:                        0.98577 
MASE Training:             1.04912 
MASE Test:                    1.10627 

Figure 30 Prediction of ETH prices with Hybrid ARIMA-SVR  model 

Source: author’s estimates in R using the data of Yahoo finance  

When measured in terms of R2, the SVR model has very low quality of forecasting 
of USDT residuals from ARIMA model, Figure 31: 

 



75 
 

 

Model  
performance 

R2   Training:    0.00239 
R2   Test:        0.00007 
MASE Training: 0.6745 
MASE Test:        0.8958 

Figure 31 Prediction of USDT residuals from ARIMA with the SVR model 

Source: author’s estimates in R using the data of Yahoo finance  

Since both ARIMA and SVR model have difficulties with capturing the highly 
fluctuating data, it not surprising that the Hybrid ARIMA-SVR model has low 
performance in forecasting USDT prices, Figure 32: 
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Model 
 performance 

R2       Training:             0.41847 
R2       Test:                    0.67374 
MASE Training:             1.60582 
MASE Test:                    1.65656 

Figure 32 Prediction of USDT prices with Hybrid ARIMA-SVR  model 

Source: author’s estimates in R using the data of Yahoo finance  

2.7 Prediction of Cryptocurrencies Prices with LSTM Models  

LSTM models are known to tackle well the stationary and also the noisy, non-
stationary and non-linear data, which is often the case with cryptocurrency prices, due 
to various external factors such as news events, economic indicators, market 
sentiment and others. Furthermore, these models can process fast and efficiently large 
amounts of data which is crucial for analyzing and predicting stock prices that are 
updated frequently, such as daily or intraday data. LSTMs are quite useful in the task 
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of time series prediction that involve autocorrelation because of their ability to 
maintain state and recognize patterns over the length of the time series. LSTM models 
introduced by Hochreiter and Schmidhuber (1997) dominate recent literature of 
financial time series forecasting with deep learning (Sezer et al. 2020). The supremacy 
of LSTM in cryptocurrency price forecasting was demonstrated by Jiang (2019), Lahmiri 
& Bekiros (2019), and Ji et al.(2019), among the others.   

A common LSTM unit is composed of a cell, input gate, output gate and forget 
gate.  

The cell state transports information across the sequence chain. It works as a 
memory of the network. The cell state carries only the relevant information in the 
sequence since the information can be removed or added via the gates. The gates learn 
what information is pertinent to keep or forget during training. Therefore, the 
information of earlier stages has now impact on later stages in the sequence. LSTM has 

three types of gates: the input (𝑖𝑡 ), forget (𝑓𝑡 ) and output (𝑜𝑡  ) gates, as shown in 
the equations below:  

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 ) (17) 
𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑡 ) (18) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 ) (19) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐̃𝑡  (20) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜 ) (21) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡 ) (22) 

 
The sigmoid function 𝜎 and the hyperbolic tangent function (tanh) are used to 

bound the output between 0 and 1, and between –1 and 1, respectively. 𝑊𝑥 are the 

weights for the respective gate(x) neurons. ℎ𝑡−1is the output of the previous LSTM 

block at t-1; 𝑥𝑡 is the input at time t, 𝑏𝑥 are the biases for the respective gates (𝑥). The 
input gate decides what new information to store in the cell state. The forget gate 
decides what information must be erased from the cell state. The output gate provides 

activation to the final output of the LSTM block at time t. 𝑐𝑡  is the cell state (memory) 

at time t; 𝑐̃𝑡  is the candidate for cell state at time t. Functional design of the LSTM cell 
is outlined on Figure 33: 
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Figure 33 The Structure of a LSTM cell  

Source: Seabe et al, 2023. 

Various hyperparameters and their combinations can be used in LSTM models 
for time series forecasting. In LSTM models the values of target variable are predicted 
depending on the values of the lagged variables, depending on the selected number of 
time steps. For this study, the LSTM model was built with  the following architecture, 
Table 18: 

Table 18 Architecture of the LSTM model 

Hyperparameter Function Value 
Time steps number of previous steps to predict the 

current step 
8 

Window size prediction window Time steps-1 

Hidden layers perform nonlinear transformations of the 
inputs entered into the network 

2 

Dropout layers dropout is a regularization method where 
input and recurrent connections to LSTM 
units are probabilistically excluded from 
activation and weight updates while training 
a network. This has the effect of reducing 
overfitting and improving model 
performance 

2 
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Number of units dimension of the hidden state, determines 
the capability of the model to retain the 
memory for all the past information. 

32 (BTC, 
USDT) 

4(ETH) 

Batch size controls the number of training samples to 
work through before the model’s internal 
parameters are updated 

21 

Epochs number of forward and backward pass 
iterations. This hyperparameter controls the 
number of complete passes through the 
training dataset 

200(BTC), 
300(ETH) 

600(USDT) 

Testing set vs 
Training set split 

split between a subset to test the trained 
model and a subset to train a model 

19% 

Optimizer the algorithm used to optimize the weights 
in each level 

Adam 

Learning rate  the ratio of parameter update to 
gradient/momentum/velocity depending on 
the optimization algorithm used 

0.01 

Dropout rate A technique to randomly drop units and their 
connections from the neural network during 
training in order to prevent overfitting 

0.01(BTC) 
0.0001 (ETH) 

0.5 (USDT) 
Activation 
Function 

Performs a nonlinear transformation of the 
input data and thus enable the neurons to 
learn better; defines how the weighted sum 
of the input is transformed into an output 
from a node or nodes in a layer of the 
network 

Sigmoid 

Loss function MSE 

In order to get the best model fit with the smallest MSE the LSTM model was 
tested for the following alternative settings:  

• batch sizes (1,9, 21)7;  

• time steps (32,24,16,8); 

• number of units (32,24,16,8); 

• dropout rates (0.001, 0.1, 0.2 and 0.5);  

• activation layer (Relu, TanH, Sigmoid); 

• number of epochs (100, 200, 300 and 400,600,800) ; 

• bidirectional layers; 

• optimizer (Adam, AdaDelta, SGD, RMSProp). 
 

7 the batch size must be evenly divisible in both the training and testing lengths 
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As shown on Figure 34, the LSTM model has almost unitary accuracy of BTC price 
predictions: 

 
 

Model 
performance 

         R2     Training:  0.997 
         R2     Test:        0.980 
         MASE Training: 1.074 
                MASE Test:        1.542 

Figure 34 BTC price forecasting with the LSTM model 

Source: author’s estimates in R using the data of Yahoo finance  

The LSTM model has almost unitary accuracy of ETH price forecasting, Figure 35: 
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Model  
performance 

R2      Training:    0.996 
R2      Test:           0.985 
MASE Training:   0.995 
MASE Test:          1.041 

Figure 35 ETH Price Forecast with the LSTM model 

Source: author’s estimates in R using the data of Yahoo finance  

The LSTM model have manifested a very high, almost unitary accuracy of USDT price 
forecasting, both on training and test data, Figure 35: 
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Model  
performance 

R2      Training:  0.996 
R2      Test:         0.985 
MASE Training: 1.003 
MASE Test:        1.013 

Figure 36 USDT Price Forecast with the LSTM model 

Source: author’s estimates in R using the data of Yahoo finance  

Considering that ARIMA and SVR models had difficulties with capturing the highly 
oscillating USDT prices, the LSTM model clearly defended its reputation of having a 
good capability with non-linear data. 
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2.8 Prediction of Cryptocurrencies Prices with Hybrid ARIMA-LSTM 

Models  

Results of computer simulations reveal that LSTM model has high accuracy of 

ARIMA residuals prediction in the training set of data, and quite low accuracy of 

predictions with  test data reflected in R2 metrics, although the MASE metrics confirms 

its high predictive capacity on both sets of data (Figure 37):  

 

Model  
performance 

R2      Training:  0.93853 
R2      Test:        0.01278 
MASE Training:   0.2154 
MASE Test:        0.91067 

Figure 37 Prediction of BTC residuals from ARIMA with the LSTM model 

Source: author’s estimates in R using the data of Yahoo finance  
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The Hybrid Arima-LSTM model manifests almost unitary accuracy of predictions 
on the training set of data (R2 measure), and a bit lower 98% accuracy of predictions 
on test data (R2 measure), Figure 38:  

 

Model  
performance 

R2      Training:             0.99671 
R2      Test:                    0.97916 
MASE Training:              1.02906 
MASE Test:                     0.83103 
 

Figure 38 Prediction of BTC Adjusted Close Prices with the Hybrid ARIMA-LSTM 
model 

Source: author’s estimates in R using the data of Yahoo finance  

The LSTM model has quite high accuracy of predicting the ETH residuals with 
train data and very low accuracy with test data (R2 measure), although the MASE 
metrics confirms its high predictive capacity on both sets of data , Figure 39: 
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Model  
performance 

R2      Training:  0.94788 
R2      Test:         0.01971 
MASE Training: 0.30379 
MASE Test:        0.92017 

Figure 39 Prediction of ETH Residuals from ARIMA with the LSTM model 

Source: author’s estimates in R using the data of Yahoo finance  

The Hybrid Arima-LSTM model has almost unitary accuracy of ETH price 

predictions with train data and test data, Figure 40:  
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Model  
performance 

R2      Training:             0.99592 
R2      Test:                    0.98624 
MASE  Training:             1.04562 
MASE  Test:              1.03724 

Figure 40 Prediction of ETH Adjusted Close Prices with the Hybrid ARIMA-LSTM 
model 

Source: author’s estimates in R using the data of Yahoo finance  

The LSTM model has high accuracy of USDT residuals forecasting  on train data 
and very low accuracy on test data, reflected in both R2 and MASE metrics, Figure 41: 
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Model  
performance 

R2      Training:  0.91631 
R2      Test:         0.00203 
MASE Training: 0.26812  
MASE Test:        1.87017  

Figure 41 Prediction of USDT residuals from ARIMA with the LSTM model 

Source: author’s estimates in R using the data of Yahoo finance  

The Hybrid Arima-LSTM model has low accuracy of USDT price prediction in 

terms of R2  and MASE measures, Figure 42:  
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Model  
performance 

R2       Training:             0.37409 
R2       Test:                    0.36898 
MASE Training:             2.16038 
MASE Test:                    1.50476 

Figure 42 Prediction of USDT Adjusted Close Prices with the Hybrid ARIMA-LSTM 
model 

Source: author’s estimates in R using the data of Yahoo finance  

Summing up this chapter, the performance of the alternative models that were 
tested in this study can be summarized in Table 19: 
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Table 19 Comparison of the alternative models’ performance in BTC, ETH and USDT 
price prediction 

Model Data set 
R2 MASE R2 MASE R2 MASE 

BTC ETH USDT 

ARIMA  
Training 0.997 0.998 0.996 0.987 0.556 0.873 
Test 0.991 1.006 0.987 1.004 0.716 1.117 

Random Forest  
Training 1.000 0.201 1.000 0.191 0.990 0.108 

Test 0.926 3.292 0.990 0.955 0.675 4.493 

Hybrid ARIMA-
Random Forest  

Training 1.000 0.094 1.000 0.096 0.989 0.093 

Test 0.999 0.233 0.999 0.222 0.692 1.991 

SVR   
Training 0.990 2.472 0.988 2.746 0.565 0.814 

Test 0.863 4.454 0.646 6.182 0.124 14.869 

Hybrid ARIMA-
SVR   

Training 0.997 1.008 0.996 1.049 0.418 1.606 

Test 0.988 1.145 0.986 1.106 0.674 1.657 

LSTM  
Training 0.997 1.074 0.996 0.995 0.996 1.003 
Test 0.980 1.542 0.985 1.041 0.985 1.013 

Hybrid ARIMA-
LSTM  

Training 0.997 1.029 0.996 1.046 0.374 2.160 
Test 0.979 0.831 0.986 1.037 0.369 1.505 

Comparison of models’ performance in cryptocurrency forecasting revealed that 
the forecasting accuracy differs much across the tested models and across the selected 
cryptocurrencies, see Table 19. 

The least predictable cryptocurrency is USDT. The forecasting difficulties are 
likely to be caused by USDT price trajectory that is characterized by a high frequency 
of oscillations of different amplitude around the mean. The best predictive capacity of 
USDT prices had LSTM model with a 99% accuracy of predictions on test data. Second 
best almost 70% accuracy on test data of were provided by Random Forest and Hybrid 
Arima-Random Forest models.   

The most predictable cryptocurrency is Ether. ARIMA, Random Forest, Hybrid 
Arima-Random Forest, Hybrid Arima-SVR, LSTM and hybrid ARIMA-LSTM models 
ensured almost 100% accuracy of predictions on training and test data.  

As for Bitcoin, ARIMA, Random Forest, Hybrid Arima-Random Forest, Hybrid 
Arima-SVR, LSTM and Hybrid Arima-LSTM have accuracy of predictions exceeding 97%.  

A comparison among the models permits to conclude that the LSTM model has 
the highest predictive capacity for all three cryptocurrencies, followed by the Random 
Forest and Hybrid Arima-Random Forest models.  
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ARIMA model has good predictive capacity on Bitcoin and Ether, however it did 
not capture well the oscillating trajectory of Tether prices, which is quite expected 
result for a linear model.  

SVR and LSTM models had difficulties with predicting the residuals from ARIMA 
model, that are characterized by a high frequency of oscillations around the mean with 
rapidly changing amplitude along the model horizon. For this reason, the Hybrid 
ARIMA-LSTM and the Hybrid Arima-SVR framework did not improve much the quality 
of ARIMA predictions, especially on test data.   

Random Forest were the only model with a good predictive capacity of ARIMA 
residuals, especially for ETH and BTC. For these cryptocurrencies the Hybrid ARIMA-
Random Forest framework clearly outperformed both ARIMA and the Random Forest 
models. 

For BTC and ETH the Hybrid Arima-LSTM model had better fit than ARIMA on 
training data, however performed slightly worse than ARIMA on test data.   

Conclusions  

This study contributes to the literature on financial time series forecasting by 
investigating the interdependencies and interactions among Bitcoin, Ether and Tether, 
and by identifying the most adequate method for forecasting prices of these 
cryptocurrencies.  

Statistical tests conducted in R demonstrated that these three cryptocurrencies 
are highly non-linear, non-stationary with high degrees of autocorrelation, long 
memory, structural breaks and the first order of integration. Seasonal effects were not 
detected in the daily data of selected cryptocurrencies. Bitcoin, Ether and Tether are 
cointegrated. Volatility of these cryptocurrencies exhibits clustering and has varied 
considerably over time.  

Being a stable coin, price trajectory of USDT is characterized by a high frequency 
of oscillations of different amplitude around the mean. Although BTC and ETH were 
created in different time and in different manner, their prices follow quite similar 
predominantly rising trend of different magnitude.  

In accordance with the Granger Causality test, past values of Ether log returns 
have predictive capacity for BTC and USDT, whereas that past values of USDT log 
returns can be used in prediction of Ether and Bitcoin.  

The forecast error variance decomposition applied to the VAR model gave 
evidence that the stationarized Bitcoin prices are predominantly influenced by their 
past values and are largely insensitive to the variations in Ether or Tether. In contrast, 
through the whole horizon of forecasting, about 40% of the variation in stationarized 
ETH prices came from the shocks to ETH itself and the remaining 60% originated from 
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BTC perturbations. In a similar fashion to BTC, the stationarized USDT prices are 
affected only by the shocks to itself and are irresponsive to the shocks to BTC or ETH. 
All the shock impacts described above were stable during the short run forecast period. 

The long-run dynamic volatility spillovers investigated with the multivariate 
GARCH-DCC models revealed that high historical correlations between Bitcoin and 
Ether make them good candidates for pairs trading; in both pairs USDT can be used as 
a base currency that indicates the value of the crypto compared to USD. The fact that 
USDT reacted differently to ETH and BTC to external shocks, like market crash in March 
2020 proves its capacity for diversifying a portfolio consisting of BTC or ETH 
cryptocurrencies.   

Johansen Cointegration test conducted in this study permitted to devise a 
stationary dynamic portfolio consisting of a certain number of Bitcoin, Ether and 
Tether shares suggested by a cointegrating vector. Investors can profit from 
purchasing this stationary portfolio when price is low and get a profit when its price 
returns to the mean or crosses above a certain level. Similarly, an investor can short 
sell the spread when its price is high and get a profit when price reverts to the mean 
or crosses below certain threshold. 

In case of trading the individual cryptocurrencies, pairs trading or portfolio 
trading profits depend on the correctness of forecasted price moves. Considering high 
volatility of cryptocurrency markets, even small increases in model’s precision can 
generate large profits to investors.  

In order to determine the most accurate price forecasting method for each 
cryptocurrency the performance of the traditional linear Arima model was compared 
with machine learning models such as Random Forest, SVR and LSTM. To 
operationalize the non-linear residuals from ARIMA with machine learning models that 
have high predictive capacity on nonlinear data, Hybrid ARIMA-LSTM, Hybrid ARIMA-
SVR and Hybrid ARIMA-Random Forest models were proposed and implemented. 

The results of computer simulations revealed that the forecasting accuracy 
differs much across the tested models and across the selected cryptocurrencies.  

The least predictable cryptocurrency is USDT. The forecasting difficulties are 
likely to be caused by USDT price trajectory that is characterized by a high frequency 
of oscillations of different amplitude around the mean. The best predictive capacity of 
USDT prices had LSTM model with a 99% accuracy of predictions on test data. Second 
best almost 70% accuracy on test data of were provided by Random Forest and Hybrid 
Arima-Random Forest models.   

The most predictable cryptocurrency is Ether. ARIMA, Random Forest, Hybrid 
Arima-Random Forest, Hybrid Arima-SVR, LSTM and hybrid ARIMA-LSTM models 
ensured at least 98% accuracy of predictions on training and test data. The Hybrid 
Arima-Random Forest models had the highest almost unitary accuracy. 
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As for Bitcoin, ARIMA, Random Forest, Hybrid Arima-Random Forest, Hybrid 
Arima-SVR, LSTM and Hybrid Arima-LSTM have accuracy of predictions exceeding 97%. 
Overall, BTC was the best predicted with the Hybrid Arima-Random Forest model, that 
ensured almost unitary accuracy.   

A comparison among the models permits to conclude that the LSTM model has 
the highest predictive capacity for all three cryptocurrencies, followed by the Random 
Forest and Hybrid Arima-Random Forest models.  

ARIMA model has good predictive capacity on Bitcoin and Ether, however it did 
not capture well the oscillating trajectory of Tether prices. 

SVR and LSTM models had difficulties with predicting the residuals from ARIMA 
model, that are characterized by a high frequency of oscillations around the mean with 
rapidly changing amplitude along the model horizon. For this reason, the Hybrid 
ARIMA-LSTM and the Hybrid Arima-SVR framework did not improve much quality of 
ARIMA predictions, especially on test data.   

Random Forest were the only model with a good predictive capacity of ARIMA 
residuals, especially for ETH and BTC. For this reason the Hybrid ARIMA-Random Forest 
framework clearly outperformed ARIMA. 

For BTC and ETH the Hybrid Arima-LSTM model had better fit than ARIMA on 
training data, however performed slightly worse than ARIMA on test data.   

The result of this study is especially relevant for finance practitioners and 
cryptocurrency traders.  

First, the causality and spillover relationships between cryptocurrency pairs that 
were identified in this study allow to determine the trading pairs and to decide on 
which positions to take in pairs trading. 

Second, a dynamic stationary portfolio of the three cryptocurrencies was 
constructed, where a number of Bitcoin, Ether and Tether shares is suggested by a 
Johansen cointegrating vector. 

Third, for each cryptocurrency were found the most accurate forecasting 
method, which can be used in individual, pairs or portfolio trading. Novel hybridization 
methods were tested on forecasting cryptocurrencies prices. 

This research can be extended by testing trading strategies that associate profits 
or losses with models’ predictive capacity. This exercise would provide additional real-
word validation for the constructed models.  

In addition, this study can be tested on more cryptocurrencies and with more 
machine learning tools for cryptocurrency price forecasting.  
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