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Abstract— Hough Transform has been successfully applied to
a variety of image processing problems in recent years. This
papers presents a novel approach for detecting and classifying 3D
objects by using the generalized Hough method and the Kinect™
sensor. Our algorithm considers feature points and color spectra
as two interleaved processes to cooperatively recognize objects in
a 2.5D fashion. With this strategy, the algorithm automates the
image pre-processing operations regardless of scenes (i.e.,
particle cleaning, hole filling, particle eroding, and object
dilating) and reduces the processing load over the sensor’s point
cloud for 3D object classification. Extensive experiments applied
—but not limited— to recognition between different and similar
objects, occlusion, and perspective change analyzing fitness and
processing time show that the 2.5D approach makes feasible 3D
object recognition for applications with video information.

Keywords— 3D object; classification; depth camera; detection;
Hough Transform; image processing; Kinect; pattern recognition

I. INTRODUCTION

In order for an image-based system to autonomously
interact in real-world environments (i.e., complex, dynamic
and uncertain), the system should recognize and understand its
surrounding. Typically, vision systems rely on some way of
feature detection and categorization to provide —to itself or to
others— information about 2D/3D objects. In this field, a wide
sort of vision techniques such as appearance-based, feature-
based and histogram-based methods are available, among
others [1]. But even a method with a very accurate detection
algorithm can be ineffective to be performed in real-time for
3D object recognition. The majority of authors propose fairly
precise algorithms but they rarely address the computational
cost or optimal parameter settings comprehensively [2].
Therefore, these concerns still remain a major challenge in 3D
image processing for real-time purposes [3].

The motivation for this work came as a result of the
research described in [4], [5] about a navigation assistance
system for a telepresence robot based on augmented virtuality.
Although the aim was to provide dependents with improved
accuracy and reduced mental workload in teleoperation tasks,
we experienced that long-term errors in the robot's odometry
—due to wheel slips by obstacles and parquet flooring—
decreased the users’ perception on the robot's environment. To
address this issue, we designed a vision-based support system
for mobile robot localization using Kinect™ and a dynamic
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particle filter [6]. From the research, we found that while the
algorithm efficiently worked in most of sceneries (i.e.,
localization at corners, corridors, windows, and landmarks), it
was not so suitable in other environments providing less
information (e.g., localization at long blank walls).

With the idea of providing a complementary method to
assist the global robot localization when the environment’s
information is lacking, a preliminary strategy for 3D object
recognition is addressed in this paper. We start from the
assumption that the characteristic information about an object
in an image is habitually contained in its color and contour
shape [7]. Object information is commonly obtained from high
cost devices such as industrial digital cameras [8], stereovision
systems [9] or laser range finders [10]. Nevertheless, they
must be combined with other devices to obtain RGB-D
information for multi-task purposes. Alternatively, various
authors have proposed the use of depth cameras (e.g.,
Kinect™) as a vision subsystem for several fundamental
problems in robotics: navigation, localization, and obstacle
detection [11], [12]. Although the benefits turn Kinect™ into a
very suitable low-cost solution, it has not yet been extensively
used for 3D object recognition —in contrast to range
sensors— until overcome some important limitations (i.e.,
worse calibration and depth resolution, narrower horizontal
FOV, and higher amount of sensor readings) [13]. These have
implications for the processing time and accuracy in 3D object
classification with video streaming.

To assist the global robot localization, we propose a
strategy for 3D object classification based in integrating shape
and color information from Kinect™. The operation is
performed with a novel approach consisting in simplifying the
Generalized Hough Transform (GHT) to 2D object sections
and using the color spectra as decision criterion. Thus, it is
possible to reduce the processing requirements for the point
clouds from Kinect™ and compensate —with color features—
possible lacks of information in shapes (e.g., occlusion and
perspective change). This strategy requires computing fewer
points than a complete 3D surface and improves the
discrimination of similar objects by color information. So, the
paper is structured as follows. The next section provides a
brief review on Hough Transform (HT) examples present in
literature and discusses their pros and cons. Section III
outlines the fundamentals of the generalized HT and its
application to object recognition is introduced. Section IV



presents the methodology followed to combine the HT method
and the Kinect™ sensor for 3D object classification. Then, the
experimental results on different case studies are explained.
Finally, the paper discusses the findings and limitations.

II.  RELATED WORK

The HT has been typically used in image processing as a
means to exploit the duality between analytic geometry and
feature points —of that geometry— to detect objects [14]. The
algorithm was firstly patented in 1962 by P. Hough as a
method for recognizing straight lines in bubble chamber
photographs and later extended by several authors [15].
Beyond the detection of simple straight lines, the method for
detecting instances of complex shapes in an image (i.e.,
ellipses, circles, and polygons) became a generalized version
of the HT [16]. This has been successfully applied to other
areas of interest such as the geometric texture measurement
for mammographic lesion detection [17]. However, classical
HT methods do not scale well for many unknown parameters
(i.e., high dimensional spaces). This led to further research
into new approaches (e.g., probabilistic, SVM, supervised
learning, etc.), thus providing an alternative to improve the
performance of conventional HT methods [18]. In these fields,
the combination of different interleaving processes for object
detection and localization has already demonstrated to benefit
from each other and to improve the total performance [19]-
[21].

Advances in the generalized HT also led researchers to
address 3D object recognition. For instance, a method to
extract 3D features by a volumetric vision system was used to
detect glasses’ frames. However, it stands for an ad-hoc
solution centered in applying some geometric constrains and
obtaining a plane in which 3D features were concentrated [9].
Closer to the background of our paper, scan matching
algorithms in the Hough domain have been mainly exploited
for robot localization [22]. As another example, a 3D version
of the algorithm presented in [22] was designed for fast global
estimate with limited precision [23]. As the main difference,
this approach is focused in the correlation of data from a pre-
built map and range sensors, which has demonstrated the
improvement of feature distributions instead of extracting line
features as conventional HT methods [24]. Moreover,
approaches based on point clouds for arbitrary shapes have
been proposed to generalize 3D object detection [10].
Nevertheless, these methods are still computationally
expensive and the development of cost-reduction strategies
require further research on Hough processing (i.e., better
engineering of the algorithm, tuning to range-finder data, and
faster implementations).

III.  BASIC PRINCIPLES

In this section a generalization of the HT and its main
properties are introduced. The key idea of the HT is to extract
features from geometric figures by mapping the input space
(i.e., image space) into a more fitting parameter space (i.e.,
Hough space). For instance, straight lines can be expressed by
their following analytic geometric form:

y=mx-+b D

where y and x are variables in the Cartesian plane, m is the
slope of the line, and b is the y-intercept. The straight line can
be drawn for each pair (x1, y1), ..., (Xs, ¥n), Which in practice
stand for infinite points defined in R2. The same geometric
form can be depicted in the Hough space through a simple
transformation considering only two parameters (m, b) per line
(Fig. 1a).

Different parameterizations for representing a line in the
image space can be found. As deduced from Eq. (1),
computational issues may happen since slopes for vertical
lines can go to infinity. Thereby, the polar representation is

typically used:
0
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where p stands for the distance between the coordinate origin
and the point (x, y), whilst 6 is the angle between the
perpendicular vector to the line and the origin intersection.
This transformation allows mapping a straight line to a unique
pair (6, p) in the Hough domain (i.e., a point) when 6 € [0, )
andp €ER, or§ € [0, 21) and p > 0.

Conversely, it is assumed using this concept that a point
with coordinates (xo, »0) in the Cartesian space can be
described by a set of straight lines with pairs (61, p1), ..., (6n,
pn) crossing that point. These can be equally expressed by Eq.
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Figure 1. Correspondence between the Cartesian space and the Hough space:
(a) transformation of straight lines, and (b) transformation of feature points
from an object countour



(3) and accordingly depicted in the Hough space through a
sine wave (Fig. 1b). Since this idea can be extended to
consider the various feature points forming an object in the
image space (e.g., its contour), the problem is then reduced to
analyze the relation of the sine waves in the Hough space.
This is easily done by discretizing the parameter space into
bins (6, p), putting a vote in every bin for each wave crossing
other ones, and finally finding the bins that have the most
votes. This method is indeed equivalent to extract features in
the image space.

IV. METHODOLOGY

This section describes the strategy carried out to optimally
parametrize the generalized HT method for the Kinect™
sensor, shows the image processing steps for 3D object
detection and classification, and explains the algorithm
operation.

A. Implementation with Kinect™

The method proposed for the detection and classification
of 3D objects was developed for Kinect™ using LabVIEW™
2011 and math nodes as part of the MathScript RT module.
Currently, various wrapper libraries exist to utilize the
functionalities of Kinect™ for that programming environment
[25]. We have chosen the one developed by the University of
Leeds, UK, called Kinesthesia [26]. This toolkit allows direct
access to the SDK 1.5 released by Microsoft whose main
features are full control of the Kinect™ functions, high
stability, and depth measurements directly given in
centimeters without requiring scaling or calibration
transformations, among others. Kinect™ incorporates a depth
detector to the RGB camera, which can be used in multi-task
mode. Because of some important features which confer
greater capability to detect singular objects as the horizontal
and vertical FOVs (57° and 43°, respectively), and depth
images in real time (640x480 pixels at 30 fps or 1280x1024
pixels at lower frame rate) we took Kinect™ into
consideration to be used in this research. However, other
solutions to improve results based on the combination of high-
quality cameras and laser range sensors —although more
expensive— may be similarly applicable.

B. Parameter Optimization

Typically, real time systems require a higher level of
demand in terms of performance compared with other
purposes. With this premise, a previous study on the
parameters influencing the Hough Transform was carried out
before setting our algorithm for video streaming. The piece of
code for the GHT was isolated and tested through Matlab®.
Three case studies were considered to compute fitness and
time processing using figures with varying difficulty: 7) simple
straight line, ii) square polygon with medium complexity, and
iii) face outline with complex shape. The testing bench was
performed in the image space with B&W test pictures (24-bits,
270x300 pixels) and consisted in varying the number of points
going through a shape and the number of lines crossing each
point:

P
Cost =—— “4)
Ay

where P stands for a finite set of points {p;} in the input space
and Ay is the angle interval for each line through {p;}. This
means that the complexity of the GHT algorithm is a quadratic
function that increases as shapes include more information. As
expected, the computation time decreases for less points and
higher angle intervals. On the contrary, the cost rapidly
increases for more points and lower angle intervals.

With the aim of finding (P, Ay) to obtain the best fitness
with the lowest computational time we analyzed the data
based on the minimum Euclidean distance. Considering the
best solution as that with least distance regarding its origin, we
describe this concept as follows:

s(P,Ay)=min| ,|T"(P,Ay)+ [;} %)
F(P,Ay)

where 7 and F stand for two dimensions depending on (P, Ay)
who describe the time processing and the fitness score,
respectively. From this, an optimal tradeoff between
processing time and fitness was obtained for P =[50, 100] and
Ay =[5, 10].

C. Image Pre-Processing

Typically, an image pre-processing technique as the one
herein implemented consists of the following steps: i) intensity
threshold selection from the HSI plane for all objects to be
detected, i) noise reduction by particle cleaning within the
image, iii) object contour enhancement by hole filling, iv)
object contour eroding to clear defects in object shapes, and v)
object dilating to recovery imperfections on shapes. Although
the image pre-processing can get high achievements, the
various parameters above mentioned depend on the particular
scene and therefore it is not possible to generalize the process.
Moreover, humans can take long time to recognize at a glance
the elements populating a scene depending on the background,
which is unfeasible in practice. Therefore, objects to be
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Figure 2. Approach for 3D object classification by combining 2D section and

color information obtained from Kinect™



detected within an arbitrary scene should be previously
discriminated from background to increase achievement.

With this aim, we have proposed to automate the process
of object detection by using a depth camera. We have used the
Microsoft Kinect™ device to take advantage from its distance
sensor to capture elements within an uncertain scene during
the pre-processing stage. To do this, a user-defined parameter
(i.e., Distance_Threshold) is used to select the range to objects
and thus discriminating the rest of the scene for the subsequent
classification stage. In this fashion, a 2D perpendicular section
is obtained from 3D objects and those within the image placed
at a distance different from that desired are separated. So, the
detection focuses only on objects at the distance established.
This requires computing fewer points than a whole 3D surface
(Fig. 2).

With this simple approach we have obtained several
advantages. On the one hand, the automation process
generalizes the object detection regardless of background,
foreground and illumination, thus avoiding the pre-processing
operations for the subsequent segmentation (i.e., particle
cleaning, hole filling, particle eroding, and object dilating). On
the other hand, this expedites the detection of 3D objects by
the generalized HT providing a simple 2D approximation (i.e.,
2.5D classification). Figure 3 shows the several steps
involved. Firstly, the RGB image is recorded by the Kinect™
camera (32-bits, VGA resolution) and then converted to the
HSI space. Secondly, the depth information is collected by the
Kinect™ sensor (11-bits) and displayed in grayscale (16-bits,
VGA resolution). The distance information is applied to the
input image due to the similar correspondence —once offset is
calibrated— and the objects within the scene are then
discriminated (8-bits, VGA resolution). The Canny filter is
applied —on the binary image— to detect contours around the
objects and finally, the result after removing the scene is
shown in Figure 3e (32-bits, VGA resolution).

The Canny filter was used as a well suitable method to
detect edges from objects within an image even under
conditions of poor signal-to-noise ratios. The operation
consists in processing images to avoid the influence of noise
by using a Gaussian filter. As the edge of an object can be
pointing to different directions, the Canny algorithm uses four
filters to detect horizontal, vertical and diagonal lines. Thus,
the angle and direction can be determined through several
iterations based on edge detection operators.

D. Detection Algorithms

The process of object detection has been approached by
combining two complementary algorithms focused on shape
recognition and color matching. To this end, our method
obtains a Hough Spectrum (HS) and a Color Spectrum (CS) of
the objects within Figures 3d and 3e, respectively. Spectra are
computed for both the reference object attempted to find and
the input image from the Kinect™ sensor, and later compared
by means of a cross-correlation operator to estimate solutions.

(c) (d)
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Figure 3. Image pre-processing technique by using Kinect™: (a) RGB image,
(b) depth image, (c) binary image, (d) Canny filter, and (e¢) segmentation

Figure 4 shows a simple way of performing the HT
algorithm in Matlab®. Notice that lines are numbered only for
illustration purposes. We provide the input image already pre-
processed and an edge detection function is applied (i.c., the
Canny filter used herein). Then, the algorithm works as
follows. Line 1 determines how many elements from the
binary image belong to the object shape. Line 2 stands for the
maximum size of the Hough matrix. Line 3 defines the angle
interval of the lines crossing each point in the image space.
Line 4 creates a two dimensional array consisting of the angles
(@) and the distances (p) from each line to the origin of the
image plane. Finally, lines 5 to 12 perform the Hough
Transform in whose inner for loop is located the accumulator.

The HT algorithm stands for a voting method which
obtains — as a result — a histogram in the parameter space (6,
p). However, a formula to compare a reference object with an
input image becomes necessary. The HS algorithm comes to
provide a well-suited method —computed from the HT— due
to its facilities for object recognition. HS is introduced as a
global searching, multi-modal and non-iterative method able
to work in unstructured environments [22]. In addition, HS is
invariant to translations and rotated by rotations —therefore
very robust to sensor or object variations— as well as provides



an acceptable response to limited information about the points
forming a shape (e.g., partial occlusion and point truncation).

Although other existing algorithms may be used (e.g.,
likelihood), we propose one that exploits the already computed
HT. The HS is computed by applying a translational invariant
transformation (g) to the HT. Since the input space i(s), s € S
is mapped to the parameter space HT {i}(p), p € P, the rigid
transformation of the § space (7= 0, R = ¢) is traduced —in
practice— as a translation of the P space in the € direction
(i.e., along the x-axis of the Hough space):

HSg{i}(0) = g[HT {i}(0,")] (6)
i(s) = i(R's + T (7)
HT'(6, p) =HT(0 + ¢, p) ®)
HSg{i}(0) = HS¢[i"] (0 + ) 9

Many functions to define g could be used; so we will use
the energy of a sequence x[n] in the discrete domain as
proposed in [22]:

glfl = X x[n]P (10)

where 7 is a finite length sequence depending on the bins used
to define the HT histogram for 6 = [0, m). Figure 5 depicts a
simple script to perform the HS algorithm in Matlab®.
Therein, lines 3 to 7 are used to compute the energy of a
sequence as described in Eq. (10).

E. Classification Algorithm

The following step of the process consists in comparing
the spectra of the objects obtained from the Kinect™ video
and that spectra from a database. The HS stands for a ranking
method (i.e., multi-modal solution) very suitable for cross-
correlation of its data series (i.e., the input and the reference
spectra). The cross-correlation operator is computationally
efficient and provides a huge potential method to know the
level of similarity regarding the objects to localize. Let fand g
be discrete functions (e.g., the array of values of the HS from
the sensor and the reference data), then the cross-correlation
for a finite length sequence is defined as:

cc, ()= ﬁ £(m)-g(m+n) (11

where m and n stand for the delay between functions. That
way, it is possible to estimate the offset between two spectra
by computing the cross-correlation through Eq. (11). Figure 6
shows the algorithm to implement the cross-correlation
operator in Matlab® (line 22). As a result, a set of hypotheses
are produced based on local maxima which maximum value
stands for the best fitness (lines 26 and 27).

Likewise, the color histograms for both the reference
object and the input image from Kinect™ are obtained by
counting of votes obtained for each component in the HSI
space. This method has been implemented by high-end
functions included in the IMAQ Vision module for

Input Elements after Canny operator (x, y); resolution of image
from depth sensor (sx, sy)

Output Hough Matrix (HM)

1 totalpix = length(x); Y%gather all pixels with value to 1

2 maxrho = round(sqrt(sx"2 +s3"2));  %determine size for HM
3 interval = 5; %define interval for theta
4 HM = zeros(2*maxrho,180/interval); Y%define 2-dim. HM
5 for cnt = 1:totalpix %run loop for all of the pixels to 1

6 | cnt2=1; %initiate variable
7 | for theta = O:interval*pi/180:pi-pi/180  %turn line for pixel
8 rho = round(x(cnt).*cos(theta) + y(cnt).*sin(theta));
%compute range to origin and round
9 HM(rho+maxrho,cnt2) = HM(rho+maxrho,cnt2) + 1;
%compute Hough accumulator
10 cnt2 =cnt2 + 1, %increment variable
111 end %end when all rotations are made for each pixel
12 end %end when go through all pixels to 1 in shape

Figure 4. Pseudocode for the Hough Transform (HT)

Input Hough Matrix (HM)
Output Hough Spectrum (HS)
1 [s1,s2] = size(HM);

2 HS = zeros(1,s2);

Y%return size of Hough matrix
%define 2-dimensional HS

3fori=1:51 %run each value of theta
4| forj=1:s2 %run each value of rho
51 | HSG)=HS() + HM(i,))*HM(ij);  %compute seq. energy
6| end %end when run all values for rho
7 end %end when run all values for theta

8 HS = HS / max(HYS); %normalize

Figure 5. Pseudocode for the Hough Spectrum (HS)

Input HS for input image (HSi); HS for reference object (HSr)
Output Fitness; Local Maxima

1 n = size(HSi,2); %return size of dimension 2 of HSi
2 CC = zeros(1,n); %define 2-dimensional cross-correlation
3 maxphi = 180/interval, minphi = 1;  %define range for spectra

4mx=0,my=0;
Sfori=1mn
6 | mx = mx + HSi(i);

7 | my =my + HSr(i);

8 end

9 mx = mx/n, my = myl/n;

10 sx =0, sy =0;

11 fori=1:n

12 | sx = sx + (HSi(i) - mx) * (HSi(i) - mx);
13 | sy = sy + (HSr(i) - my) * (HSr(i) - my);
14 end

15 denom = sqrt(sx*sy); Y%see line 24
16 for phi = minphi:1:maxphi

17 | for theta=1:n

18 | | delay = theta - phi; %def. similarity as a function of delay
19 if delay <1

20 | delay = maxphi + delay,

21 end

22 CC(phi) = CC(phi) + (HSi(theta)-mx)*(HSr(delay)-my);
%compute cross-correlation of HSi and HSr
23 | end

24 | CC(phi)= CC(phi)/ denom; Y%normalize cross-correlation
25 end

26 Fitness = max(CC) %find best fitness
27 Local _Maxima = find(CC == fitness)*interval %find indexes
of nonzero elements

Figure 6. Pseudocode for the cross-correlation of the HS
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Figure 7. Results of the 2.5D classification algorithm considering different case studies: (a) recognition between different objects, (b) and (c) recognition between
similar objects, (d) and (e) recognition under partial and total occlusion, and (f) recognition under perspective change

LabVIEW™, Specifically, the IMAQ Color Learn function
has been used to extract the color features of an image and
return the CS found in a ROI defined by the Canny filter (i.e.,
the object). Subsequently, the CS is normalized and the IMAQ
Color Match function finds the match between the color
content of multiple regions in the image and that defined by
the CS reference.

Finally, the classification of objects is performed by
combining the fitness scores from the HS algorithm and the
CS function as follows:

w = a:(wcs) + (1- a)-(Wns) (12)

where o : [0, 1] € Q stands for the contribution of color
information to the object classification, and wcs and was are
the fitness scores for the CS and HS, respectively. Depending
on the object complexity (i.e., contour richness and color
depth) a different a value may be set during the algorithm
execution. Let wes and was be functions computed as follows:

wcs = max[norm(CC(CSi, CSr))] (13)
was = max[norm(CC(HSi, HSr))] (14)

where CSi and CSr are the color spectra of the input image
and the reference object being compared, and HSi and HSr are
the Hough spectra of the input image and the reference object
likewise.

V.  EXPERIMENTATION

This section shows a comprehensive study on the 2.5D
classification algorithm considering four case studies: i)

recognition between different objects, if) recognition between
similar objects, iii) recognition under occlusion, and iv)
recognition under perspective change (Fig. 7). Experiments
were completed with an Intel® Core™ i7 (2.6 GHz, 16 GB
RAM) and evaluated by measuring the fitness score (w) and
processing time (7) over 50 iterations.

With the aim of performing the first test, five objects with
strong differences on shape and color were included in the
same scene: vase, cup, book, bear, and bottle (Fig. 7a). The
contribution of fitness was set to a = 0.5, which means that
both Hough and color information were considered in the
same proportion. Table I shows the results for each series
when comparing an object respect to the others. Results show
an average fitness score of true positives between w = 92.1%
and 97.9%, whilst the false positive for the rest of the objects
was observed between w = 44.5% and 80.5% (the latter not
shown in Table I). We found significant differences between
positive and non-positive matches (53.4% > Aw > 11.6%),
where the closest false positive was due to the similarity in
color spectrum between the vase and the book; this in turns
depends on « selection. With the aim of obtaining a statistic
for model comparison, a ROC analysis was carried out [27].
Figure 8 shows the area under the curve (AUC) for which a
sensitivity of TPR = 0.941 and a specifity of TNR = 0.335
were obtained [28]. Moreover, the average execution time per
iteration varied between 7 = 0.361+.012s and 0.404+.032s.
Considering a frame rate of 30 fps for the Kinect™ sensor
(32-bits, 640x480 pixels), this suggests that the 2.5D
algorithm is feasible for applications of object classification
with video information.



The second experiment was intended to study the
algorithm’s performance when objects with very similar
characteristics shared the same scene. Tests were divided into
two groups: a set of cups, and a set of books (Fig. 7b and 7c).
On the one hand, we consciously chose for the first series two
very similar cups and one with slightly different features.
Notice that the object intended to detect is the cup at the
middle (i.e., Cup 2). The correlation of both shape and color
were studied, but focusing more on color differences because
it was beforehand known that we were facing similar objects
(e = 0.7). As shown in Table II, the two white cups obtained
an average fitness score of w > 91.4%, whilst the blue cup —
due to its slightly oval contour and blue stripes pattern—
obtained an average fitness score of w = 75%. The ROC
analysis found a sensitivity of TPR = 0.736 and a specifity of
TNR = 0.461 (Fig. 8). Moreover, the experiment revealed that
the execution time per iteration decreased. This suggests that
the algorithm’s computational cost improved —as expected—
when fewer and similar objects had to be processed. On the
other hand, the second series was focused on study the
features of morphologically identical books. A classification
with higher contribution in color fitness would have been
trivial due to the higher information of book covers, so we
decided to set & = 0.1 to test the algorithm’s response.
Although the selected book —the one at the middle— was
successfully recognized with an average fitness score of w =
100%, the high similarity of the other books provided an
estimate very close (6.7% > Aw > 0.7%). Nonetheless, the
ROC analysis obtained a sensitivity of TPR = 0.875 and a
specifity of TNR = 0.421 (Fig. 8). This indicates that the
algorithm is useful in multi-modal applications where several
objects have to be simultaneously detected.

The third experiment was focused to study the algorithm’s
performance when objects were occluded in the scene. Tests
were divided into two groups: partial occlusion and total
occlusion with o = 0.5 (Fig. 7d and 7e). Firstly, a can was
placed between the bear and the field of view of Kinect™
leaving approximately 30% of the bear completely hidden
(Table III). We observed a response higher than w = 91% with
an execution time of 7 = 0.152+.019s, which suggests the
soundness of the algorithm even under conditions of partial
occlusion. On the contrary, the second test showed a poor
response of the algorithm under total occlusion. This result
provides a helpful feedback and suggests that hypotheses with
w < 60% may be discarded —in these conditions— for a
positive matching.

Finally, the fourth experiment consisted in studying the
algorithm’s behavior when an object was observed in a
different perspective regarding the information hold in the
database (Fig. 7f).We found that the fitness score strongly
decreased as expected to w = 52.8% when the bear was
captured in a lateral position (a = 0.5). However, some of the
features —mainly to color and shape information to a lesser
extent— restrained the response (Table IV). This means that
in situations where the Hough Transform can be penalized, the

TABLE 1. RESULTS ON FITNESS AND PROCESSING TIME FOR OBJECT
RECOGNITION BETWEEN DIFFERENT ONES

Object | Wmax Wnin w = dev Tmax Timin 7+ dev
Vase | 0.964 | 0.840 | 0.932+.024 | 0.384 | 0.353 | 0.361+.012
Cup 0.987 | 0.974 | 0.979+.017 | 0.413 | 0.366 | 0.396+.012
Book | 0.970 | 0.950 | 0.955+.042 | 0.541 | 0.373 | 0.404+.032
Bear | 0.944 | 0.814 | 0.921+.044 | 0.568 | 0.371 | 0.392+.032

Bottle | 0.973 | 0.941 | 0.967+.015 | 0.538 | 0.374 | 0.395+.030

TABLE II. RESULTS ON FITNESS AND PROCESSING TIME FOR RECOGNITION
BETWEEN SIMILAR OBJECTS

Object | Wmax Wnin w =+ dev Tmax Tmin 7+ dev
Cupl | 0.799 | 0.669 0.75+.030

Cup2 | 0.960 | 0.921 | 0.951+£.042 | 0.345 | 0.231 | 0.264+.020
Cup3 | 0.960 | 0.845 | 0.914+.009

Bookl | 0.990 | 0.820 | 0.933+.042

Book2 1 0.998 1+.004 0.488 | 0.278 | 0.327+.031
Book3 | 0.997 | 0.979 | 0.993+.030

TABLE III. RESULTS ON FITNESS AND PROCESSING TIME FOR RECOGNITION
UNDER OCCLUSION

Object | Wmax Wnin w =+ dev Tmax Tmin 7+ dev
Bear 0.931 | 0.893 | 0.918+.006 | 0.224 | 0.114 | 0.152+.019
(30%)
Bear 0.670 | 0.563 | 0.582+.027 | 0.472 | 0.228 | 0.281+.008
(95%)

TABLE IV. RESULTS ON FITNESS AND PROCESSING TIME FOR RECOGNITION
WITH CHANGE OF PERSPECTIVE

T+ dev
0.172+.020

w + dev Tmax Tmin
0.528+.034 | 0.327 | 0.127

Object | Wmax Winin
Bear 0.579 | 0.425

True Positive Rate

—8— Different objects
~—@— Similar cups

Similar books

0 0,2 0,4 0,6 0,8 3
False Positive Rate

Figure 8. ROC plots produced for experiments depicted in Fig. 7a-7¢

algorithm may be successfully compensated with color
spectrum.

VI. CONCLUSSIONS

This paper presented a 2.5D classification algorithm —
based on Hough Transform and color spectra— for object
recognition by means of Kinect™. The aim was to take
advantage of the depth sensor facility: /) to automate the
image pre-processing operations for the subsequent
segmentation regardless of arbitrary scenes (i.e., particle
cleaning, hole filling, particle eroding, and object dilating) and
ii) to simplify the generalized HT for 3D object recognition
from video information. To this end, we addressed a
comparative analysis on different case studies for recognition
between different objects, similar objects, occlusion, and



perspective change —extensible to others— by analyzing
representative performance metrics and ROC curves.

On the one hand, we found a high fitness score and
sensitivity (w = 92.1%, TPR = 0.941, and TNR = 0.335) in
sceneries including objects to be classified among different
ones (i.e., strong differences on shape and color). In other
sceneries including objects intended to be classified between
similar shapes, we also found a high fitness score with similar
sensitivity and specifity (up to w = 100%, TPR = 0.875, and
TNR = 0.421). This suggests that the algorithm is suitable in
multi-modal applications where an object have to be detected
between others within the same scene. In mono-modal
sceneries, the algorithm behaved very robustly in conditions of
partial occlusion (30%), thus keeping its success rate (w >
92%). Although the response worsened for objects
experiencing a total occlusion (w ~58%) and a perspective
change (w ~52%) as expected for the HT, the tests suggest that
the algorithm can be strongly compensated with color
information in situations where the HT is penalized by lack of
information on shape. On the other hand, the methodology
followed to size the number of points and lines defining the
object shapes demonstrated to play a key role, thus optimizing
the execution time for video streaming purposes with P =[50,
100] and Ay = [5, 10]. The algorithm showed different
computational cost depending on the number of objects within
the scene and the complexity of their shapes. In general, the
algorithm responded better in mono-modal situations where
average times were better than in multi-modal searching
schemes.

Despite of the advantages of Kinect™, the camera

involved limiting issues: 7) shorter range, ii) narrower
horizontal FOV, and iii) worse depth accuracy compared with
laser range finders. Moreover, we observed from the
experience that the pseudorandom beam pattern projected over
objects would cause —in the same series— a jitter on fitness
scores up to 9%. In addition, the distance threshold used to
discriminate objects from the scene stands for a user-defined
parameter that limits the automated operation for autonomous
systems. In this sense, future efforts and experiments will be
addressed to generalize the conclusions and enhance the
algorithm’s capabilities for 3D object classification.
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