

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA GUIA DOCENTE

CURSO 2017/2018

Máster Oficial en Ingeniería Química

DATOS DE LA ASIGNATURA								
Nombre:								
Biopolímeros y Tecnología de Coloides								
Denominación en inglés:								
Biopolymer and Colloid Technology								
Código:	Carácter:							
	1140107				Optativo			
Horas:								
		Totales	5	Presenciales		No presenciales		
Trabajo estimado:		112.5		45			67.5	
Créditos:								
	Grupos reducidos							
Grupos grandes	ļ	Aula estándar	Labor	atorio	rio Prácticas de can		Aula de informática	
2		1		1 0.5			0	
Departamentos:	Áreas de Conocimiento:							
Ingeniería Química, Química Física y Ciencias de los Materiales				Ingeniería Química				
Curso:	Cuatrimestre:							
	1º - Pı	rimero		Segundo cuatrimestre				

DATOS DE LOS PROFESORES							
Nombre:	E-Mail:	Teléfono:	Despacho:				
Moros Martínez, José Enrique	jose.moros@diq.uhu.es	959219982	P.3-N.6-11				
*Sánchez Carrillo, Mª Del Carmen	mcarmen@uhu.es	959218203	EX-P3-N6-09				

Consultar los horarios de la asignatura

DATOS ESPECÍFICOS DE LA ASIGNATURA

1. Descripción de contenidos

1.1. Breve descripción (en castellano):

Clasificación, propiedades físicas y químicas y obtención de biopolímeros. Aplicaciones, aspectos económicos de su producción, impacto ambiental y biodegradabilidad. Formulación de sistemas coloidales. Ingeniería de productos coloidales. Estabilidad y reología de dispersiones.

1.2. Breve descripción (en inglés):

Classification, physical and chemical properties and obtaining of biopolymers. Applications, economic aspects of production, environmental impact and biodegradability. Formulation of colloidal systems. Engineering of colloidal products. Stability and rheology of dispersions.

2. Situación de la asignatura

2.1. Contexto dentro de la titulación:

La presente asignatura corresponde al módulo de intensificación en Diseño del Producto Microestructurado, en el cual se pretende que el alumno adquiera conocimientos sobre la microestructura, estabilidad y reología de sistemas coloidales. Para ello, se aplicarán conceptos de Ingeniería Química, Química Física e Ingeniería del Producto para dar a conocer al alumno conceptos fundamentales y prácticos de sistemas complejos de tipo coloidal y de biopolímeros especialmente interesantes anivel industrial.

2.2. Recomendaciones:

Se recomienda haber cursado las asignaturas obligatorias del Master en Ingeniería Química, así como Reología.

3. Objetivos (Expresados como resultados del aprendizaje):

- -Adquirir habilidades en la formulación, procesado y caracterización de sistemas coloidales con especial interés en las aplicaciones en la industria agroquímica y farmacéutica.
- -Conocer las claves científicas y herramientas de control y seguimiento de la estabilidad física de las dispersiones coloidales, así como de sus propiedades reológicas en distintas condiciones de flujo.
- Dar a conocer al alumno los biopolímeros en Naturaleza, métodos de extracción y funcionalidad de las mismas y principales aplicaciones en las Industrias Alimentaria, Química y Farmacéutica

4. Competencias a adquirir por los estudiantes

4.1. Competencias específicas:

- CEGOP3: Gestionar la Investigación, Desarrollo e Innovación Tecnológica, atendiendo a la transferencia de tecnología y los derechos de propiedad y patentes
- CEGOP4: Adaptarse a los cambios estructurales de la sociedad motivados por factores o fenómenos de índole económico, energético o natural, para resolver los problemas derivados y aportar soluciones tecnológicas con un elevado compromiso de sostenibilidad
- CEGOP5: Dirigir y realizar la verificación, el control de las instalaciones, procesos y productos, así como certificaciones, auditorías, verificaciones, ensayos e informes
- CEPP1: Aplicar conocimientos de matemáticas, física, química, biología y otras ciencias naturales, obtenidos mediante estudio, experiencia y práctica, con razonamiento crítico para establecer soluciones viables económicamente a problemas teóricos
- CEPP2: Diseñar productos, procesos, sistemas y servicios de la industria química, así como la organización de otros ya desarrollados, tomando como base tecnológica las diversas áreas de la ingeniería química, comprensivas de procesos y fenómenos de transporte, operaciones de separación e ingeniería de las reacciones químicas, nucleares, electroquímicas y bioquímicas
- CEPP3: Conceptualizar modelos de ingeniería, aplicar métodos innovadores en la resolución de problemas y
 aplicaciones informáticas adecuadas, para el diseño, simulación, optimización y control de procesos y sistemas
- CEPP4: Tener habilidad para solucionar problemas que son poco familiares, incompletamente definidos o que tengan especificaciones en competencia, considerando los posibles métodos de solución incluidos los más innovadores, seleccionando el más apropiado y poder corregir la puesta en práctica, evaluando las diferentes soluciones de diseño
- CEPP5: Dirigir y supervisar todo tipo de instalaciones, procesos, sistemas y servicios de las diferentes áreas industriales relacionadas con la ingeniería química
- CEPP6: Diseñar, construir e implementar métodos, procesos e instalaciones para la gestión integral de suministros y
 residuos, sólidos, líquidos y gaseosos, en las industriales, con capacidad de evaluación de sus impactos y sus riesgos
- CEGOP2: Dirigir y gestionar la organización del trabajo y los recursos humanos aplicando criterios de seguridad industrial, gestión de la calidad, prevención de riesgos laborales, sostenibilidad y gestión medioambiental

4.2. Competencias básicas, generales o transversales:

- CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- CB7: Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- CB8: Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
- CB9: Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- CB10: Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- CG01: Capacidad para aplicar el método científico y los principios de la ingeniería y economía, para formular y resolver problemas complejos en procesos, equipos, instalaciones y servicios, en los que la materia experimente cambios en su composición, estado o contenido energético, característicos de la industria química y de otros sectores relacionados entre los que se encuentran el farmaceútico, biotecnológico, materiales, energético, alimentario o medioambiental
- CG02: Concebir, proyectar, calcular y diseñar procesos, equipos, instalaciones industriales y servicios, en el ámbito de la ingeniería química y sectores industriales relacionados, en términos de calidad, seguridad, economía, uso racional y eficiente de los recursos naturales y conservación del medio ambiente
- **CG03:** Dirigir y gestionar técnica y económicamente proyectos, instalaciones, plantas, empresas y centros tecnológicos en el ámbito de la ingeniería química y los sectores industriales relacionados
- CG04: Realizar la investigación apropiada, emprender el diseño y dirigir el desarrollo de soluciones de ingeniería, en entornos nuevos o poco conocidos, relacionando creatividad, originalidad, innovaciones y transferencia de tecnología
- CG05: Saber establecer modelos matemáticos y desarrollarlos mediante la informática apropiada, como base científica y tecnológica para el diseño de nuevos productos, procesos, sistemas y servicios, y para la optimización de otros ya desarrollados
- CG06: Tener capacidad de análisis y síntesis para el progreso continuo de productos, procesos, sistemas y servicios utilizando criterios de seguridad, viabilidad económica, calidad y gestión medioambiental
- CG07: Integrar conocimientos y enfrentarse a la complejidad de emitir juicios y toma de decisiones, a partir de información incompleta o limitada, que incluyan reflexiones sobre las responsabilidades sociales y éticas del ejercicio profesional
- CG08: Liderar y definir equipos multidisciplinares capaces de resolver cambios técnicos y necesidades directivas en contextos nacionales e internacionales
- CG09: Comunicar y discutir propuestas y conclusiones en foros multilingües, especializados y no especializados, de un modo claro y sin ambigüedades
- CG10: Adaptarse a los cambios, siendo capaz de aplicar tecnologías nuevas y avanzadas y otros progresos relevantes, con iniciativa y espíritu emprendedor
- CG11: Poseer las habilidades del aprendizaje autónomo para mantener y mejorar las competencias propias de la ingeniería química que permitan el desarrollo continuo de la profesión
- CT1: Capacidad de comunicar, de manera oral y escrita, conocimiento y conclusiones, de forma eficaz, ante público especializado y no especializado
- CT2: Capacidad para leer documentos, escribir textos y comunicarse de manera oral en lengua inglesa
- CT4: Capacidad para el aprendizaje autónomo y toma de decisiones

5. Actividades Formativas y Metodologías Docentes

5.1. Actividades formativas:

- Sesiones de Teoría sobre los contenidos del Programa.
- Sesiones Prácticas en Laboratorios Especializados o en Aulas de Informática.
- Sesiones de Campo de aproximación a la realidad Industrial.
- Actividades Académicamente Dirigidas por el Profesorado: seminarios, conferencias, desarrollo de trabajos, debates, tutorías colectivas, actividades de evaluación y autoevaluación.

5.2. Metologías docentes:

- · Clase Magistral Participativa.
- Desarrollo de Prácticas en Laboratorios Especializados o Aulas de Informática en grupos reducidos.
- Desarrollo de Prácticas de Campo en grupos reducidos.
- Resolución de Problemas y Ejercicios Prácticos.
- Tutorías Individuales o Colectivas. Interacción directa profesorado-estudiantes.
- Planteamiento, Realización, Tutorización y Presentación de Trabajos.
- Conferencias y Seminarios.
- · Evaluaciones y Exámenes.

5.3. Desarrollo y justificación:

- Sesiones académicas de teoría: Sesiones para el todo el grupo de alumnos en las que el profesor explicará los contenidos teóricos fundamentales de cada tema y su importancia en el contexto de la materia.
- Sesiones académicas de problemas: Sesiones para el todo el grupo de alumnos en las que el profesor resolverá ejercicios y problemas sobre los contenidos teóricos trabajados en cada tema.
- Sesiones prácticas en laboratorio: Sesiones para el todo el grupo de alumnos en las que se realizarán prácticas de laboratorio relacionadas con los contenidos teóricos de la asignatura.
- Resolución y entrega de problemas/prácticas/trabajos: Sesiones para todo o parte del grupo de alumnos en las que se realizarán diferentes actividades en presencia del profesor
- -Tutorías individuales: Sesiones individuales en las que el profesor, a requerimiento de un alumno concreto, atenderá sus dificultades personales en cualquier aspecto relacionado con la materia y le orientará en la metodología de estudio.

6. Temario desarrollado:

- 1. Diversidad y funciones de los biopolímeros en la Naturaleza
- 2. Aplicaciones, aspectos económicos de su producción, impacto ambiental y biodegradabilidad
- 3. Caracterización, métodos de extracción y funcionalidad de los biopolímeros mas importantes para las Industrias Alimentaría y Farmacéutica.
- 4. Introducción a la Tecnología de Coloides.
- 5. Estabilidad de sistemas coloidales
- 6. Formulación y Procesado de sistemas coloidales.
- 7. Reología de sistemas coloidales

7. Bibliografía

7.1. Bibliografía básica:

- 1. Goodwin, J. Collloids and Interfaces with Surfactants and Polymers. An Introduction. J.Wiley. N.York. 2004
- 2. McClements, D.J. Food Emulsions. Principles. Practice and Technology. CRC Press, Boca Raton, 2nd edition 2004.
- 3. Dickinson, E. An Introduction to Food Colloids. Oxford University Press. Oxford. 1992
- 4. Friberg, S.E. Larsson, K, Sjoblom J. Food Emulsions, 4th edition. Revised and Expanded. M.Dekker. N. York. 2003.
- 5. Lapasin R, Pricl, S. Rheology of Industrial Polysaccharides. Blackie Academic & Professional (Chapman & Hall). London. 1995.
- 6. Dickinson, E. and Vliet T. van. Food Colloids, Biopolymers and Materials. Springer Verlag 2003.
- 7. Steinbuchel, A. Biopolymers: Biology, Chemistry, Biotechnology, Applications. 10 tomos. Wiley-VCH publisher 2001-2003
- 8. Steinbuchel, A. and Marchessault, R.H. Biopolymers for Medical and Pharmaceutical Applications Wiley-VCH 2005
- 9. Williams, P. A. and Phillips, G. O. Gums and Stabilizers for the Food Industry 1-14. Woodhead Publishing 1982-2007

7.2. Bibliografía complementaria:

- 1. Barnes, H.A., Hutton, J.F., Walters, K., An Introduction to Rheology, Elsevier, Amsterdam, 1989.
- 2. Barnes, H.A. A Handbook of Elementary Rheology. Institute of Non-Newtonian Fluid Mechanics. Univ. Wales. 2000
- 3. Rao, M.A., Steffe, J.F. Viscoelastic Properties of Foods. Elsevier Applied Science, Londres, 1999.
- 4. Nemeth, T. S. Biopolymer Research Trends. Nova Science Publishers 2008
- 5. Nishinari, K. Physical Chemistry and Industrial Application of Gellan Gum. Springer-Verlag 1999

8. Sistemas y criterios de evaluación.

8.1. Sistemas de evaluación:

- Examen de teoría/problemas
- Defensa de Prácticas
- Defensa de Trabajos e Informes Escritos
- Seguimiento Individual del Estudiante
- Examen de prácticas

8.2. Criterios de evaluación y calificación:

Se realizará:

- a) Una evaluación continua de los alumnos, valorándose su interés y participación. Correspondería al 10% de la nota global.
- b) Redacción y presentación pública de trabajos individuales y/o en equipo relacionados con los contenidos del curso. Correspondería al 30% de la nota final de la asignatura.
- c) Defensa y examen de practicas de laboratorio: se realizará una entrevista al alumno sobre aspectos relacionados con las prácticas realizadas en el laboratorio. Supondrá el 10% de la nota final.
- d) Examen escrito sobre cuestiones teórico/prácticas desarrolladas durante el curso, resultando el 50% de la nota global.

9. Organización docente semanal orientativa:							
	-5	ccande	e dividos	al hucklos	dica dica	High Sando	
Ser	USUS CUIT	Gride Se Cride	lig Culbril	o GUIVO	Secretary	Pruebas y/o actividades evaluables	Contenido desarrollado
#1	0	0	0	0	0		
#2	0	0	0	0	0		
#3	0	0	0	0	0		
#4	0	0	0	0	0		
#5	0	0	0	0	0		
#6	0	0	0	0	0		
#7	0	0	0	0	0		
#8	3	0	0	0	0		TEMA 1
#9	3	0	0	0	0		TEMA 2-3
#10	3	2	0	0	0		TEMA 4
#11	3	2	0	0	0		TEMA 4-5
#12	3	2	0	5	0		TEMA 6-7
#13	2	2	0	5	0	Presentación de trabajos	
#14	2	2	0	0	0	Examen teórico	
#15	1	0	0	0	5	Examen de prácticas	
	20	10	0	10	5		