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a  b  s  t  r  a  c  t

The  ecological  footprint  (EF)  method  represents  the  suitability  of  a given  population  on  the  carrying
capacity  of  the  total  system.  It  was  developed  in order  to measure  the  relationship  between  nature  and
humans,  being  supported  on the premise  that  each  individual  requires  a  surface  area  that  provides  goods
and  services  essential  to  life. In  this  article  only  in EF  for universities  is studied,  but  most  of  the underlying
concepts  and  methods  are  valid  for any  other  human  activity  for which  EF may  be  applied.

In  this  study  an  uncertainty  analysis  of  EF  of  universities  is  made.  This  is, to the  authors’  knowledge,
the first  time  such  a study  is published  on the  subject.  The  intention  is  to  demonstrate  the  usefulness
of uncertainty  analysis  in the  evaluation  of results,  inter-comparability,  and  on communication  of  EF
outcomes.

Results  showed  that  EF  model  uncertainties  have  large  impact  on EF  estimates,  in particular  in what
regards  the  decision  about  accounting  or not  the  contribution  of  key  parameters.  Inclusion  or  not  of  very
sensitive  parameters,  for which  there  is also  high  uncertainty,  in  the  estimation  of  EF may  have  a  strong
impact  on  the estimated  values  and  also  in  the inter-comparability  of  EF  estimates.  This  is the  case  of
mobility.

Uncertainty  analysis,  by  studying  model  uncertainty,  parameter  uncertainty  and  variability,  can
provide  a robust  framework  for the inter-comparison  of ecological  footprints  of  universities.  In  fact,
the method  may  prove  useful  for  the assessment  of ecological  footprints  of  any  kind.

©  2013  Elsevier  Ltd.  All rights  reserved.

1. Introduction

In the introductory paragraph of the Talloires Declaration for
sustainability, university presidents, chancellors, and rectors state
their commitment to environmental sustainability in higher edu-
cation, and their concern about the unprecedented scale and speed
of environmental pollution and degradation, and the depletion
of natural resources. They agreed in promoting the creation of
an equitable and sustainable future for all humankind, namely
by increasing awareness of environmentally sustainable develop-
ment, creating an institutional culture of sustainability, educate for
environmentally responsible citizenship, fostering environmental
literacy for all, and practice institutional ecology. Many of these
objectives are well answered by the ecological footprint (EF).

Wackernagel and Rees (1996) proposed EF as a quantitative
method to measure sustainable development and impact of human
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activities. According to the authors, EF is the ‘load’ imposed by a
given population on nature, being an accounting tool that enables
us to estimate the resource consumption and waste assimilation
requirements of a defined human population or economy. It is
accounted in terms of a corresponding productive land area, as the
amount of nature mankind occupy in order to live (Wackernagel
et al., 1999; Wackernagel and Rees, 1996). The method represents
the suitability of a given population on the carrying capacity of the
total system. In theory, EF is estimated by determining how much
land area would be necessary to produce all the goods consumed,
and to assimilate all the wastes generated by a human activity. Thus,
it expresses the load on the environment caused by the system
under study. It was  developed in order to measure the relationship
between nature and humans, being supported on the premise that
each individual requires a surface area that provides goods and ser-
vices essential to life. There has been a widespread interest in the
methodology, which led to it being included in the European Com-
mission’s Common Indicator set for regional sustainability (ECIP).
Along with this interest also the need for standardizing methodolo-
gies has grown in order to reduce discrepancies. This has ultimately
resulted in the formation of the Global Footprint Network (GFN),
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which has so far concentrated on the standardization of method-
ologies for EF of nations, cities, and finance. Educational facilities
have not been included yet. Probably, as a result of this lack of
guidance, EF accountings for university facilities vary substantially,
much due to methodological differences, in particular in how some
key variables are accounted.

As yet, proposed EF methodologies have concentrated in mak-
ing the process of calculation as simple as possible, but in doing so,
large amounts of information are discarded. In particular, the vari-
ability in the data supporting the calculations and the uncertainty
inherent to the methodologies has been largely overlooked. In con-
trast to the classic deterministic approach, probabilistic evaluation
of the EF is here proposed, with which much more information can
be retrieved from the supporting data and be transposed to eas-
ily interpretable outputs. We  focus on EF of educational facilities,
in particular universities, but the method may  be applied to any
other human activity.

Due to the uncertainty, irreversibility and complexity that
characterize global environmental problems, conservation mes-
sages are strengthened when people can use prior experience to
assess new information, i.e., when inter-comparability is possible
(Faucheux and Froger, 1995). Several authors have stated that in
face of uncertainty, people increase the intertemporal flexibility
of the decisional strategy, being more environmentally conserva-
tive (Borgonovo and Peccati, 2007; Vercelli, 1991), which plays in
the same direction as the message conveyed by EF. Having these
conclusions in mind, the following paragraphs will discuss how
uncertainty analysis may  contribute to strength EF message by
explicitly quantifying the uncertainty about results and by pro-
viding a framework for inter-comparison of studies. Methods will
be detailed for Monte Carlo simulations as the methodology here
proposed does not require advanced statistical skills.

Our working question is: Is the ecological footprint of universi-
ties comparable? Or are the fundamental parameters in the model
too different? In this article we state the hypothesis that uncer-
tainty analysis can help in assessing the relevancy of parameters
and in making the distinction between parameters. We  test the
hypothesis with a case-study similar to many others around the
world, but we introduce in the analysis both epistemic and aleatory
uncertainty and evaluate how these two sources of uncertainty can
affect inter-comparison.

Uncertainty includes epistemic uncertainty and aleatory uncer-
tainty. Though several other classifications have been proposed
(Helton and Davis, 2003; Khuri and Mukhopadhyay, 2010; Myers,
1999; Saltelli and Marivoet, 1990; Shih et al., 2009), in general all
agree about these two major divisions. Epistemic uncertainty is
the scientific uncertainty about the model itself, namely on appro-
priateness to model a given problem, about the equation and its
parameters, and about the modelling domain, boundary and initial
conditions. All parameters are also subject to epistemic uncertainty
as their measured values depend on decisions about data collec-
tion methods or data transformation. As a consequence, discussion
about epistemic uncertainty relies on different perspectives of how
the system should be represented and many times on what is it
representing.

Epistemic uncertainty is related to model’s strengths and
weaknesses. Frequently mentioned strengths are (Rees, 2000): (i)
it incorporates several defining qualities of ecological economics;
(ii) is comparable to other measures of human impact, such as
Ehrlich’s and Holdren’s (1971) definition of human impact on
the environment, and human ‘load’ as defined by Catton (1980);
and (iii) is conceptually simple and intuitive. The weaknesses of
EF are Fiala (Fiala, 2008; Rees, 2000): (i) it does not capture the
full range of ecologically significant impacts on the ecosphere;
(ii) it over-simplifies nature and society, having little predictive
value; (iii) is not dynamic modelling; and (iv) cannot be used for

detailed forecasts; (v) cross-country comparisons of the ecological
footprint rely on boundaries that are arbitrary, and thus potentially
meaningless; (vi) arbitrariness of assuming both zero greenhouse
gas emissions and national boundaries; and (vii) it is a measure of
inequality as EF is strongly related to human development.

Some other problems have been referred due to incorrect
implementation of EF, namely (Herendeen, 2000): (i) confounding
sustainable and conventional (unsustainable) agriculture in calcu-
lating ‘food land’ – sustainable agriculture would require more land
per unit of food, increasing EF; (ii) using the net CO2 sequester-
ing potential of an immature, successional forest as ‘energy land’,
which can lead to both under and over-estimation of CO2 uptake;
(iii) considering only gross, not net, imports and impacts. This latter
argument is particularly important when dealing with universities,
which are activities inside a larger system (country), as it raises the
problem of accountability: for instance, the atmospheric emissions
made during the transport of staff, faculty and students between
their place of residence and the university is a footprint of the
university, or external to it? One may  argue that emissions are an
unavoidable consequence of its existence, in which case it should
be accountable for. However, the decision about its location, trans-
port network and residential park is usually a responsibility of the
state, therefore a very significant share of the emissions is due to
planning options over which the university has very little control.
Then, should the university be made accountable for the emissions?
Why not also account all emissions produced during the transport
of other goods, such as food, paper, mail, from the energy needed
to transport water, etc.? This also raises the problem of the arbi-
trariness of boundaries as referred by Fiala (2008): where is the
system boundary? At the university walls/fence, or at some, to be
defined, distance? One solution is to set the boundary at the fence
and account in EF only what is effectively consumed internally. This
is more in agreement with the concept of net EF as all impacts made
between the production and transportation are attributed to the
activity of third parties: the university accounts for EF of the pro-
duction, irrespective of where it was  produced. A more in depth
discussion on the subject was made elsewhere (Frey, 1992).

The calculation of EF requires that a detailed mass and energy
balance should be made for the activity, quantifying inputs and out-
puts that may  have relevant impacts. The following consumption
categories have been identified by authors for EF of universi-
ties (see references in Table 6): energy consumption for lighting
and climatization, fuel for heating, consumption of water, paper,
and food, emissions due to mobility (vehicle emissions), and built
area. Production of wastewater has been either overlooked or
treated together with the consumption of water (with many sim-
plifications, namely by accounting only energy use, and not the
emission of, e.g., methane and nitrous oxide). Wastewater treat-
ment relative weight for the total EF has been indicated as equal
to that of tap water production: Jenkin and Stentiford (2005) refer
0.004 ha/person for the first and 0.005 ha/person for the latter. Such
a methodological simplification may  be justified by the still very
limited number of EF studies on the subject.

Aleatory uncertainty represents the diversity or heterogeneity
in a well characterized population, refers to the natural variability
of the process being evaluated, and unlike the epistemic uncer-
tainty it cannot be reduced by further study or measurement. This
is not to say that measurements are not necessary, quite on the
contrary as the quantification of variability requires that a repre-
sentative number of samples should be taken from the population.

Mathematical representations of both aleatory and epistemic
uncertainties can be conceptualized as uncertain frequency distri-
butions. With the proper methods one can propagate uncertainty
through the model to estimate both aleatory and epistemic uncer-
tainties in the output (Simon, 1999). Even though there are many
alternative characterizations of uncertainty (e.g., possibility theory,



Author's personal copy

278 L.M. Nunes et al. / Ecological Indicators 32 (2013) 276–284

Table 1
Epistemic uncertainty in the calculation of EF for universities.

Model epistemic uncertainty (MUN) Parameters epistemic uncertainty (PUN)

Origin Description Origin Description

Completeness Does the model account for all the variables which can
significantly affect the results?

Origin of the uncertainty Is the relevant source of
uncertainty being considered,
i.e., what parameters are
uncertain?

Indefiniteness in the model’s
characterization

Does the model account for all the relations and
descriptions?

Characterization of parameter
uncertainty

How is the statistical
distribution obtained?

⇓  ⇓
Tested models (see legend) A1: {B, W,  E, M,  F, P, WS} Uncertainty parameters Mobility; Population; Food

A2:  {B, W,  E, M,  F, P, WS,  WW}
A3: {B, W,  E,·  · ·,  F, P, WS}
A4: {B, W,  E,·  · ·,  F, P, WS,  WW}

B: built area; W: water consumption; E: energy consumption; M: mobility; F: food consumption at the canteen and cafeteria; P: paper consumption; WS:  production of
wastes; WW:  production of wastewater.

fuzzy set theory, evidence theory, interval analysis) we consider
here only probabilistic characterization. For short, we will desig-
nate aleatory uncertainty as “variability” and epistemic uncertainty
as “uncertainty”.

In this study an uncertainty analysis for EF applied to universi-
ties is made. This is, to the authors’ knowledge, the first time such
a study is published on the subject. The intention is to demonstrate
its usefulness in the evaluation of results, inter-comparability, and
on communication of model outcomes.

2. Methods

2.1. Variability and uncertainty propagation through the model

Variability and uncertainty, in one or more of the model inputs,
in a probabilistic assessment may  be introduced by second-order
random variables. First-order variables represent variability, i.e.,
the heterogeneity or diversity in a well-characterized population,
while second-order random variables also include uncertainty,
i.e., partial ignorance or lack of perfect knowledge about a poorly
characterized phenomenon which may  be reducible through fur-
ther study (Hart et al., 2003). Second-order (also known as
“two-dimensional”) Monte Carlo simulation (2D-MCS) has been
extensively used to separately propagate uncertainty and variabil-
ity (Hoffman and Hammonds, 1994). 2D-MCS involves a double
nested looping procedure consisting of multiple realizations of
model parameters and iterations of input variables. The outcome is
a set of cumulative distribution functions simultaneously display-
ing uncertainty and variability in the results. Several other methods
exist for uncertainty propagation, each with some advantages and
disadvantages (Pouillot and Delignette-Muller, 2010). These meth-
ods include differential analysis (Helton and Davis, 2003; Shih et al.,
2009), response surface methodology (Khuri and Mukhopadhyay,
2010; Myers, 1999), Monte Carlo simulations (MCS) (Helton, 2008;
Öberg and Bergbäck, 2005; Saltelli and Marivoet, 1990), and vari-
ance decomposition procedures (Borgonovo and Peccati, 2007; Li
et al., 2001). There has been very limited analysis on uncertainty
propagation through the EF model, being the exceptions focused
only on the propagation of aleatory uncertainty with probabilis-
tic assessment methods (Li et al., 2001), with fuzzy set theory
(Borgonovo and Peccati, 2007), and MCS  to evaluate the effect of
climate change (Klein-Banai and Theis, 2011). Given the large epis-
temic uncertainties associated to the models and to the parameters,
more frequent complete uncertainty analysis would be desirable.

Consider that results of ecological footprint, EF(x) = [EF1(x),
EF2(x),. . .,  EFnY(x)] are functions of uncertain analysis input param-
eters x = [x1, x2,. . .,  xnX]. Uncertainty in x will have as a consequence
an uncertainty in EF(x). Two questions are usually put (Helton,

2008): (1) What is the uncertainty in EF(x) given the uncertainty
in x?, and (2) How important are the individual elements of x with
respect to the uncertainty in EF(x)? Uncertainty analysis answers
the first question, while sensitivity analysis answers the second.

The second-order random variable, EF, can be approximated
using Monte Carlo or Latin Hypercube sampling in nested loops to
maintain the isolation between variability and uncertainty as given
by the following pseudo-code (Burmaster and Wilson, 1996; Frey,
1992):
Begin outer loop for Uncertainty (repeat Nouter times)

Pick one set of point values from each distribution representing Uncertainty
Begin inner loop for Variability (repeat Ninner times)

Compute this one simulation
Store desired information

End inner loop
End outer loop

Algorithm routine counters Nouter and Ninter assume usually large
numbers, in the order of a few thousand to guarantee the required
minimum level of accuracy for the statistics that one is interested
in from model outputs (e.g., the mean, and percentiles) – see, e.g.,
(Thompson, 1992) for methods to determine the exact number.
As a rule of thumb, about 3000 runs should be enough for most
applications (Vose, 2012).

Table 1 shows the main epistemic sources of uncertainty: model
epistemic uncertainty (MUN), and parameters epistemic uncer-
tainty (PUN), i.e., uncertainty in the number and properties of
input parameters x. The option here was to separate uncertainty
sources as it helps differentiating the component of uncertainty
propagation which results from modelling assumptions (i.e., which
parameters to include in the model, and mathematical expressions
describing the model), from the component due to parameters
uncertainty (i.e., the quantification of modeller’s uncertainty about
their true values) which is handled by the techniques of uncertainty
propagation described above.

MUN  is only dependent of decisions about what equations to
use and what parameters to include. This uncertainty is quantified
by testing alternative models and parameters, in a loop external to
the outer loop in the pseudo-code presented above, and comparing
their results. We  tested four models for the quantification of EF,
where the only differences were the inclusion or removal of one or
two parameters. Model A1 represents the most common descrip-
tion found in literature, being a function of seven major parameters,
usually designated consumption categories (Table 1). Model A2 is
similar to A1, but the production of wastewater from all activities
in the campus is also considered, which is accomplished by adding
a second term equal to the consumption of water, multiplied by
a coefficient to account for leaks, equal to 0.9. Model A3 includes
all parameters of A1, except mobility, hence accounting exclusively
for direct impacts. Finally, Model A4 is similar to A2, but excludes
mobility.
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The definition of the statistical distributions characterizing PUN
in the components of x is the most important part of the method
as these distributions determine both the uncertainty in EF and
the sensitivity of the elements of EF to the elements of x (Helton,
2008). They are typically defined with the help of experts (Ayyub,
2001), being a costly part of the process. Uncertainty characteriza-
tion effort should be concentrated on the parameters considered
by the analyst as having more PUN. In our case uncertainty was
introduced in the parameters population (P), mobility (M), and
food (F), as these parameters are less well characterized and the
uncertainty about their true value is the highest.

Variability is discussed when presenting the case-study, as it
reflects properties of specific parameters.

2.2. Data collection

Different methods were used to collect the data required
depending on their availability. Data concerning built land, con-
sumption of materials and energy, and population (students, staff
and faculty) were obtained directly from the central offices of the
University of Algarve. As data concerning the means of transporta-
tion used by the population was not available a specific survey
was put in place, as described below. Student’s residence halls are
outside the university premises and were not accounted.

2.2.1. Food
Food variables were divided into the following categories: meat,

fish and shellfish, vegetables, and fruit. Very detailed data on the
amount (weight) of each category was provided by the university
services, discriminating several sub-categories in each, on a yearly
basis.

2.2.2. Electricity and water consumptions
Detailed monthly records were provided by the central services

of the university for electricity (kWh/month) and water consump-
tions (m3/month).

2.2.3. Paper consumption
Paper consumption per size (A5, A4, A3) was obtained from: (i)

data provided by central services; (ii) inquiries made independent
reprographies inside the institution. Three types of paper formats
were considered: from A5 to A3 and test paper (equivalent to
two A4 sheets). Conversion of paper sheets to tones was  made by
applying a conversion factor of 210,000 sheets/t, as obtained from
weighting experiments.

2.2.4. Waste production
The amount of recyclable and general domestic equivalent

wastes were estimated considering the deposition capacity (m3),
determined by the number of containers multiplied by their capac-
ity and filling fraction, fc at the time of collection. Data was obtained
by surveys made to personnel responsible for the deposition of
wastes. Mass of wastes (t) was obtained by multiplying waste
volume (m3) by the random variable specific weight, �w (t/m3).
Emissions from the trucks used in the collection of the wastes were
calculated as for mobility.

2.2.5. Mobility
Emissions from vehicles are an important source of gases into

the atmosphere being, in some universities, responsible for the
largest footprint (Table 6). There are two main methodologies to
quantify these emissions: by measuring at a representative num-
ber of vehicles, or by estimation using emission factors. The first
method, though much more accurate, takes longer to implement
and is a very costly option (both economically and in its footprint).
The later requires some base data on the categories of vehicles,

travelled distances, and use frequency. This latter option was  the
one chosen. Data was obtained by surveying the population for the
following information: (i) position in the institution; (ii) transport
used in the trips to and from the university (passenger car, motor-
cycle, bus, on foot or bicycle, car sharing); (iii) travelled distance,
each way; (iv) type of engine of the vehicle (gasoline, diesel, liq-
uefied petrol gas, other); (v) engine volume; (vi) average velocity
used during the trip.

Emissions of carbon monoxide, methane and nitrogen oxides
were estimated by multiplying the travelled distance, per engine
type and volume, by the corresponding emission factor. These latter
were calculated using equations provided in COPERT III – Com-
puter program to calculate emissions from road transport in Europe
(Ntziachristos and Samaras, 2000), which uses velocity as the inde-
pendent variable. Emissions from public transports were weighted
by the fraction of BUS passengers that attend the university. Total
emission per substance was obtained by adding individual emis-
sions for all vehicle types.

2.3. Ecological footprint

EF was determined by a component-based method, reflect-
ing the four main categories of final consumption: energy, which
accounts the area needed to absorb emissions of carbon dioxide,
corresponding to electrical energy and fuels; food, corresponding to
the area required to produce it; materials, corresponding to the area
required to produce primary materials, such as tap water, metals,
plastics, paper; and built land, corresponding to areas that became
unproductive due to the construction of buildings and other facil-
ities. Total EF (total gha) was determined by a weighted sum of
the final consumption categories, ci (t/year), where the weights are
the equivalence factors, efi (global ha/category ha), divided by the
land productivity, pi (category ha/t/year) (Chambers et al., 2001);
EF (gha) per person is obtained by dividing the former by the pop-
ulation:

Total EF =
∑

i

ci · efi
pi

(1)

EF = total EF
population

(2)

Land productivity and equivalence factors are presented in Table 2.
Probabilistic EF estimation was  made through application of Monte
Carlo simulation (MCS) considering the probability density func-
tions for the former parameters as indicated in Table 2. Simulations
were performed with Crystal Ball® (Oracle, 2010). To better repro-
duce the probability density functions and increase the accuracy of
the estimates, Latin hypercube sampling was  used. With the advent
of commercial software products for probabilistic assessment, the
calculations involved in uncertainty analysis became easy to learn,
implement, and fast even for non-specialist.

3. Case-study

The case-study we use to demonstrate the application of the
method is the University of Algarve campus at Gambelas (CGUA),
located in the south of Portugal. It is about 10 km from the centre
of Faro, the district capital, inside a natural area, and only a cou-
ple of kilometres from the Ria Formosa Lagoon Reserve. The total
population (staff and students) attending the facilities is of about
4950 people. Small oscillation around this value is considered due
to the many different academic and scientific activities taking at
the campus. The campus has a total area of 20 ha and the buildings
occupy a land surface of 6.9 ha. Due to the distance from the city
centre, individuals make the travel using several alternative means
of locomotion (personal car, motorbike, bicycle, or bus).
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Table 2
Constants used in the calculation of EF.

Consumption categories (ha/t/year, unless otherwise stated) Land productivity (pi) Equivalent factors (efi) (Wackernagel et al., 2005)

Paper (forest land) 0.9 (Chambers et al., 2001) 1.37
Water (forest land) 2.06 × 10−7 (Chambers et al., 2001) 1.37
Waste (landfill area) 1.65 × 10−6 (this study) 0.48

CO2 emissions (forest land) 0.56 (Chambers et al., 2001) 1.37
CH4 emissions (pasture land) 454.5 (Walsh et al., 2009) 0.48
NO2 emissions (pasture land) 181.8 (Bontemps et al., 2011) 0.48

Energy (earth power or forest land) (ha/kWh/year) 2.11 × 10−3a (Chambers et al., 2001) 1.37
Food  meat 0.19 (FAO, 2000) 0.48
Vegetables 22.50 (FAO, 2000) 1.8
Fruit  (orange) 30 (FAO, 2000) 1.8
Fish  and shellfish 0.033 (FAO, 2000) 0.36

a Considering CO2 emission factor for Portugal (EDP, 2012).

Faro has a moderate Mediterranean climate. Summers are warm
to hot with average daytime temperatures of 27–35 ◦C. In the
autumn and winter months, temperatures are around 8–17 ◦C.
Annual average temperature is around 17 ◦C. Air conditioning
is, therefore, used more intensively during summer and winter
months to produce cold and hot air, respectively.

There is one central cantina and several small bars where most
of the staff, faculty and students have their meals. Wastes produced
by these and other services are deposited in two types of containers:
domestic containers with a total deposition capacity of 11.66 m3;
and containers for recyclables (paper, glass, packages, batteries),
with a total deposition capacity of 30 m3. Domestic wastes (non-
recyclables) are collected daily by the municipality; recyclables
are collected twice per week by a private company. Total waste
production was estimated considering a random variable filling
percentage, fc. More details on the statistical distribution fitted to all
the parameters are presented in Table 3. Annual water and electric-
ity consumption are, respectively, of about 49,000 m3 and 2.4 GWh.
Consumption of paper was estimated from results of the inquiry as
about 2.01 million A4 sheets (after conversion from other sizes),
i.e., about 9.9 t.

Inline with the arguments presented in the Introduction about
accountability of mobility we introduce it here as one of the uncer-
tain parameters. The other is food consumption as the menu can
change substantially, and population due to uncertainties in the
quantification of the number of people effectively utilizing the cam-
pus in a given period.

4. Results and discussion

Numerical stability was achieved after counter Ninner = 3000 tri-
als, as indicated by a difference lower than 1% on the calculated EF
values of the 50th and 95th percentiles. Nouter was  set at 100 trials
after verifying that the variance of the estimated percentiles did
not change for higher values. A total of 300,000 model outcomes
were thus obtained and are analysed in the following paragraphs.

4.1. Sensitivity analysis

The parameters that most contribute for EF total variance are
those related to mobility, namely the velocity of gasoline per-
sonal automobiles, energy consumption, food (in particular, the
amount of meat, fruit and fish), population utilizing the campus,
and water use (which for models A2 and A4 also include wastewa-
ter) (Table 1). When mobility is included in the computation of EF
they are the parameter for which the model is more sensitive, with
contributions to variance (CV) between 44.4% and 42.9% obtained
for models A1 and A2, respectively (Table 4). Energy consumption is
the second most important parameter with CV between 25.3% and
25.4%, becoming the most important parameter if mobility is not
considered (models A3 and A4), with CV varying between 42.8%

for the first and 41.9% for the latter. Food ranks third, in particu-
lar due to the contribution of consumption of meat, fruit and fish
(CV ranging between 6.7% and 7.4% for A1 and A2; and between
10.3% and 11.4% for A3 and A4, Table 4). Population size and water
consumption are only relevant for models A3 and A4 (CV > 5.0%),
i.e., when mobility is not considered. The inclusion of wastewater
in the model (A2 and A4) has a small impact with CV < 5.0% when
mobility is considered; but becomes relevant when they are not (CV
between 6.8% and 8.0% respectively for models A3 and A4, Table 4).

Mobility is a key parameter in the model, both in terms of
CV (Table 4) and relative contributions of parameters to the EF
(Table 5). They account to over 41% of EF (models A1 and A2), being
only surpassed by energy consumption (CV > 51%) – see Table 5.
High weights for transport have been reported in other universi-
ties, namely at the Universities of Redlands (Venetoulis, 2001), Ohio
(Janis, 2007) and Willamette University (Torregrosa-López et al.,
2011) in the USA, Kwantlen (Burgess and Lai, 2006) in Canada, New-
castle (Flint, 2001) in Australia, La Coruña (Álvarez, 2008) in Spain
(Table 6).

Table 5 also shows that energy has a high contribution to the
EF, with or without mobility, being the most relevant consumption
category in the models where mobility is not considered (models
A3 and A4).

4.2. Uncertainty in ecological footprint estimates

The ecological footprint of is presented in Table 7 for the stud-
ied models. Uncertainty analysis indicates that the choice of model
parameters (MUN) may  make the estimated EF to change by a fac-
tor of five (Table 7): from a maximum of 2.49 ± 0.17 gha in model
A2 to a minimum of 0.55 ± 0.04 gha in model A3. This is due to
two modelling options: (i) inclusion of wastewater production; (ii)
inclusion of mobility. The impact of the first parameter is very small,
as reflected in the statistics of models A1 against A2 and A3 against
A4 (Table 7). The impact on EF mean value is only of about 2.5%
and 2.0%, respectively. Quite on the contrary, the impact of mobil-
ity in the outcome is high, as reflected in disparate estimated EF
values for models A1 against A3 and A2 against A4 (Table 7). In
the former a 93.1% increase was obtained when comparing mod-
els with and without mobility; in the latter the increase was even
larger, attaining 94.2%.

In addition, the weights of each parameter on the total EF,
reported for different universities (Tables 6 and 7) can vary substan-
tially. Such that no statistically significant linear correlation was
found between parameters (Pearson r < 0.75), nor was it possible to
discriminate any meaningful clustering using principal component
analysis, linear discriminant analysis, and cluster analysis (results
not shown here), which are three commonly used exploratory data
analysis. Still, for most of the cases, energy consumption, mobil-
ity and food consumption ranked among the most relevant. Three
main reasons may  have lead to the observed lack of similarity:
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Table  3
Properties of random variables used in the calculation of EF.

Consumption categories Parameters Variability/uncertainty Statistical distributiona Data source

Paper consumption (t/year) Variability Triangular (9.107, 9.586, 10.065) Central services –
invoices

Water  consumption (t/year)b Variability Normal (48,775.6, 9280.8) Central services –
invoices

Wastewater production (t/year)b Variability Normal (43,898.1, 8352.7) Estimated from water
consumption

Waste  production fc Variability Triangular (0.4, 0.6, 0.75) Estimated from
deposition capacity
and filling fraction

�w (t/m3) Variability Triangular (0.15, 0.20, 0.25) From bibliography
Truck  velocity (km/h) Variability Normal (35.0, 4.5) Detailed survey
Truck travelled distance (km) Constant 24.0 From road map

Energy consumption (MWh/year) Variability Normal (2440.9, 331.8) Central services –
invoices

Built  area (ha) Constant 6.931 Central services

Food  consumption (t/year) Meat Uncertainty Triangular (38.4, 42.7, 46.99) Central services –
invoices

Vegetables Uncertainty Triangular (93.5, 103.9, 114.3) Central services –
invoices

Fruit (orange) Uncertainty Triangular (32.9, 36.5, 40.2) Central services –
invoices

Fish  and shellfish Uncertainty Triangular (16.3, 18.0, 19.9) Central services –
invoices

Mobility (velocity in km/h;
distance in km – one way)

Gasoline passenger car (velocity) Uncertainty Normal (73.9, 18.4) Detailed survey

Gasoline passenger car (distance) Uncertainty Normal (14.1, 10.8) Detailed survey
Diesel passenger car (velocity) Uncertainty Normal (65.5, 15.0) Detailed survey
Diesel passenger car (distance) Uncertainty Normal (26.3, 22.0) Detailed survey
Motorcycle (velocity) Constant 80.0 Detailed survey
Motorcycle (distance) Constant 42.0 Detailed survey
Bus  (velocity) Uncertainty Normal (35.0, 4.5) Detailed survey
Bus  (distance) Constant 13.0 From road map

Population Uncertainty Triangular (4700, 4948, 5195) Central services

a Triangular (min, most probable, max); normal(average, standard deviation).
b Assuming that 1000 L = 1 tonne (t).

Table 4
Sensitivity analysis – contribution to variance (CV) (%).

Consumption categories Model

A1: {B, W,  E, M,  F, P, WS} A2: {B, W,  E, M,  F, P, WS,  WW} A3: {B, W,  E,· · ·,  F, P, WS} A4: {B, W,  E,· · ·, F, P, WS,  WW}
Mobilitya (M)  44.4 42.9 – –
Energy (E) 25.3 25.4 42.8 41.9
Meat  (F) 7.4 7.4 11.4 11.2
Fruit  (F) 6.9 6.9 11.4 11.2
Fish  (F) 6.7 6.8 10.5 10.3
Population (P) <5.0 <5.0 10.4 10.7
Water (W)  + wastewater (WW)  <5.0 <5.0 6.8 8.0
Wastes production (WS) <5.0 <5.0 <5.0 <5.0
Build area (B) <5.0 <5.0 <5.0 <5.0

a Velocity of gasoline cars.

Table 5
Model results: relative contribution of parameters (%) to the EF.

Consumption categories Model

A1: {B, W,  E, M,  F, P, WS} A2: {B, W,  E, M,  F, P, WS,  WW} A3: {B, W,  E,· · ·,  F, P, WS} A4: {B, W,  E,· · ·, F, P, WS,  WW}
Mobility (M) 41.9 41.0 – –
Energy (E) 52.1 51.0 89.6 86.7
Food (F) 3.3 3.3 5.9 5.6
Paper (P) 0.29 0.29 0.48 0.49
Water (W)  2.2 2.1 3.7 3.6
Wastewater (WW)  – 2.1 – 3.2
Wastes (WS) 0.14 0.14 0.25 0.27
Built area (B) 0.07 0.07 0.072 0.14
EF  total 100 100 100 100
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Table 6
Ecological footprint of universities.

University University of
Redlands
(USA)

University of
Toronto at
Mississauga
(USA)

Ohio State
University
(Columbus,
USA)

Colorado
College (USA)

University of
Illinois at
Chicago (USA)

Willamette
University
(USA)

Kwantlen
University
College
(Canada)

University of
Newcastle
(Australia)

Ref. Venetoulis
(2001)

Conway et al.
(2008)

Janis (2007) Wright (2002) Klein-Banai
and Theis
(2011)

Torregrosa-
López et al.
(2011)

Burgess and Lai
(2006)

Flint (2001)

Year 1998 2005 2006 2006 2008 2007/2008 2005 1999
Population 2727 12,770 77,120 2500 36,640 3393 17,734 35,500
Area  (ha) 57 91 711 36 97 28 62 140
Location City City City City City City City City
Total  EF (total gha) 2300 8744 6,50,666 5603 97,601 7804 3039 3592
Total  EF/Area 40 97 916 154 1 005 279 81 26
EF  (gha) 0.9 1.1 8.7 2.2 2.7 2.3 0.33 0.19
EF/m c 0.6 0.9 2.4 2.2 2.4 1.3 0.16 0.10
Energy (%) 50.1 69.4 23.3 87.6 72.7 30 28.9 47.0
Mobility (%) 32.5 16.0 72.2 1.4 12.6 43 53.0 46.0
Wastes (%) 12.4 4.0 4.5 na 11.8 na na 2.0
Paper  (%) na na na na na na 7.2 na
Food  (%) na 9.2 na 10.0 2.6 25 9.6 2.0
Built  land (%) na 1.2 a na 0.17 na 1.1 2.0
Water  (%) 5.0 0.20 na 1.0 0.13 na 0.20 1.0
GDP  × 1012 USD 14.5 1.6 1.2

University Holme Lacy
College (UK)

University of
East Anglia
(UK)

Northeastern
University
(China)

Campus de
Vegazana
University León
(Spain)

University of
Valencia (tree
campus)
(Spain)

University
Santiago
Compostela
(Spain)

University
Coruña (Spain)

University of
Algarve

Ref. Dawe et al.
(2004)

Wright et al.
(2009)

Li et al. (2008) Hernández
et al. (2009)

López et al.
(2010)

Álvarez (2008) Álvarez (2008) This study

Year  2001 – 2003 2006 2009 2007 2013 2013
Population 7500 3213 23,345 14,000 48,660 32,246 23,167 4950
Area  (ha) 257 129 110 42 72 130 – 20
Location Rural City City City centre City City City Rural
Total  EF (total gha) 296 23,455 24,787 6300 39,853 5159 3475 5049–9999
Total  EF/Area 1.2 182 50 150 554 40 - 252–500
EF  (gha) 0.57 7.3 1.1 0.45 0.81 0.16 0.15 1.02–2.02
EF/m c 0.44 6.9 1.1 0.45 0.66 0.13 0.07 –
Energy (%) 19.0 21.6 68.0 62.0 15 63 25.4 51.0–89.6
Mobility (%) 23.0 5.4 0.08 19.2 19 18 56.1 41.0–41.9
Wastes (%) 32.0 72.3 5.7 na 0 1 1 0.14–0.25
Paper  (%) na na 2.0 2.8 0 1 1.3 0.29–0.49
Food  (%) 25.0 na 21.8 na 11 na na 3.3–5.9
Built  land (%) 1.0 0.5 0.42 15.9 55 16 2 0.07–0.14
Water  (%) b 0.1 2.0 0.03 0 1 0.2 2.1–3.7
GDP  × 1012 USD 2.3 5.9 1.5 0.22

a With mobility.
b With built land.
c EF per person without accounting for mobility.

(i) case-studies are intrinsically different; (ii) the methodologies
used to quantify the many parameters are not consistent (differ-
ent methods); and (iii) the “ignorance” about the true value of
some parameters leads to biased estimates (uncertainty). In the
case of mobility important differences are expectable between
universities where students reside onsite in residence halls (e.g.,
Colorado University, USA and Northeastern University, China) from
those where they do not (e.g., La Coruña, Spain and University

of Algarve, Portugal). However, this cannot alone fully justify the
difference, as some universities with large accommodation facili-
ties have reported large EF for mobility (e.g., Ohio State University,
USA). Methodological options and parameter uncertainty may be
in the origin of most of the differences found.

Also, can methodological differences and uncertainties have a
relevant impact on the objective of the EF? Namely, can they sub-
stantially alter the results of inter-comparison? Fig. 1 may  help

Table 7
EF estimates (gha) for University of Algarve (mean ± standard deviation).

Statistical parameter Model

A1: {B, W,  E, M,  F, P, WS} A2: {B, W,  E, M,  F, P, WS,  WW} A3: {B, W,  E,· · ·,  F, P, WS} A4: {B, W,  E,· · ·, F, P, WS,  WW}
Mean 1.97 ± 0.13 2.02 ± 0.16 1.02 ± 0.02 1.04 ± 0.02
Median 1.97 ± 0.13 2.02 ± 0.16 1.02 ± 0.02 1.04 ± 0.02
Standard deviation 0.13 ± 0.003 0.13 ± 0.003 0.13 ± 0.002 0.13 ± 0.003
Skewness −0.0003 ± 0.0086 −0.0004 ± 0.0087 −0.0010 ± 0.0083 −0.0013 ± 0.0091
Kurtosis 2.99 ± 0.03 2.99 ± 0.04 3.00 ± 0.03 2.99 ± 0.03
Minimum 1.51 ± 0.14 1.54 ± 0.17 0.55 ± 0.04 0.57 ± 0.04
Maximum 2.44 ± 0.14 2.49 ± 0.17 1.48 ± 0.05 1.51 ± 0.05
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Fig. 1. Uncertainty analysis for the EF (gha): effect of considering mobility on the calculation of EF (models A1 and A3). Data with and without mobility from other universities
was  included for comparison.

answering this question. Both uncertainty (MUN and PUN) and
variability are included, but for MUN, only the models for mobility
are shown given the irrelevant variance introduced by wastewater.
PUN is reflected in models A1 and A3; parameter uncertainty (PUN)
is reflected by the uncertainty bands bracketing the central line,
which is the cumulative distribution function for EF and is the quan-
tification of variability. Results from the set of universities shown
in Table 6 were included as horizontal lines, with the parameter
mobility and also after subtracting it from EF (“without mobility”),
hence allowing direct comparison with models A1 and A3. Model
A1 EF estimates are similar to those of three other universities (Uni-
versities of Colorado, Willamette, and Illinois, all in the USA) as
these are the only ones inside the interval of variation of EF, PUN
considered. For model A3 five universities share similar footprints.
By reducing the uncertainty brought into the model by mobility,
similarity between universities increased, despite the fact that the
range of variability decreased from a �EF (difference between the
highest maximum and the lowest minimum) of 1.68–0.96 gha (i.e.,
1.75 times). In conclusion, mobility biases the estimates and hin-
ders comparability, mainly due to the fact that: (i) mobility patterns
vary strongly between countries, even for equal population sizes,
due to different traditions; (ii) within the same country, mobility
patterns are affected by travel habits and transportation networks.

If cumulative distribution functions and uncertainty bands were
available also for other published studies, then a much richer graph-
ical and statistical analysis could have been made, leading, most
probably to the conclusion that the majority of the universities
shared the same EF, which is something impossible to evaluate
when evaluating single EF values as those published so far. Strictly
for demonstration purposes an uncertainty range was added to
the results of all other universities assuming for them coefficients
of variation equal to those of models A1 and A3 (Table 7). Note
how variability increased from models A1 to A3, as indicated by
a larger coefficient of variation for A3 (12.7%) than for A1 (6.6%)
(Table 7). The more the range of EF for different universities super-
poses, the highest the probability that their EF is statistically equal.
For instance, for model A1 the universities of Colorado, Willamette
and Illinois could be considered as having an EF similar to that of

the University of Algarve, but when uncertainty is excluded, the
University of Illinois becomes significantly different from the other
three. When mobility is excluded, as in model A3, a larger number
of universities show EF similar to that of the University of Algarve,
and also between themselves. Given the large weight of mobility
on EF, and also its large PUN, it is, at the light of these results, the
most relevant parameter affecting the estimates of EF of univer-
sities. This conclusion stills needs validated by futures studies. By
filtering out uncertainty, the model reflects better the aleatory vari-
ability, a natural property of the system, non reducible by more
studies and supplementary data, being, therefore much closer to
the “true” value.

Moreover, by using probabilistic methods to estimate the EF, all
available data, and expert opinion, may  be integrated in the model
through probability distributions, being the outcome a set of several
hundred thousand model estimates, which contrast with the single
value obtained by deterministic estimates, commonly published.

In what regards the proposed working question, these results
indicate that the fundamental parameters in the EF model are
essentially comparable between universities, as long as epistemic
uncertainty is duly controlled. Also, uncertainty analysis has proven
to be helpful in assessing the relevancy of parameters (sensitivity
analysis) and in making the distinction between parameters (epis-
temic uncertainty analysis). Uncertainty analysis provides a robust
framework for inter-comparison of universities and for the assess-
ment of ecological footprint model uncertainties, uncertainty on
the value of parameters and on their variability.

5. Conclusions

The usefulness of uncertainty analysis using Monte Carlo sim-
ulations for comparing the estimates of the ecological footprint
of universities in different countries or locations was evaluated.
The initial hypothesis was  that uncertainty analysis can help in
assessing the relevancy of parameters and in making the distinction
between case-studies, allowing more robust inter-comparison.

Results showed, for a test case-study, that model uncertainties
have the largest impact on the estimates, in particular in what
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regards the decision about accounting or not the contribution of
mobility. When this parameter is excluded from the model, EF
estimates for different universities converge to more similar val-
ues, indicating that it may  be responsible for a non negligible bias.
Wastewater production as also tested, but it showed an insignifi-
cant impact on the estimates.

Probabilistic uncertainty analysis, by studying model uncer-
tainty, parameter uncertainty and variability provides a robust
framework for the inter-comparison of ecological footprint of uni-
versities.

The method has some clear advantages over deterministic
approaches: (i) all, or at least a great part of available base data
can be incorporated in the final estimates; (ii) the weight of each
parameter on the value of the estimate and its uncertainty can
me measured, and in necessary, more data may  be sought; (iii)
modeller’s uncertainty is directly accounted and estimated; (iv)
estimates are “uncertain”, which plays in favour of increasing stake-
holders’ intertemporal flexibility of decisional strategies and of
more environmentally conservative decisions. It is not, however,
without faults: (i) bad data will produce less accurate results – being
the model more data intensive, it is more prone to biases due to
incomplete and erroneous data; (ii) robust data quality assurance
strategies are needed to control these errors (though not specific
only to these models), which can take large amounts of time to do.

The method may  prove useful for the assessment of ecological
footprints of any kind; in particular, it may  prove useful to incor-
porate regional variability into EF, which has been pointed out as
one of the faults of EF (Fiala, 2008).
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