PRUEBA DE EVALUACIÓN DE BACHILLERATO PARA EL ACCESO Y LA ADMISIÓN A LA UNIVERSIDAD

Reunión Profesores IES

30 Octubre 2019

CURSO 2019/2020

- Directrices y Orientaciones Generales para las pruebas de acceso a la Universidad.
- Resultados Selectividad 2019
- Documentos de errores más comunes

DATOS DE CONTACTO:

M Mar Díaz Requejo: mmdiaz@uhu.es

Mar Lorenzo Torvisco: mlorenzo@iesdiegodeguzman.net

RESULTADOS SELECTIVIDAD 2019

JUNIO	PAU (2016)	PEBAU (2017)	PEBAU (2018)	PEBAU (2019)
DISTRITO UNIVERSITARIO	Nota media	Nota media	Nota media	Nota media
ALMERÍA	5,96	5,27	5,37	6,01
CÁDIZ	5,42	5,20	5,01	5,98
CÓRDOBA	6,20	5,42	5,65	6,10
GRANADA	6,00	5,65	5,51	6,03
SEVILLA (HISPALENSE)	6,06	5,50	5,49	5,89
HUELVA	5,90	5,20	5,23	5,86
JAÉN	5,57	5,05	5,24	5,83
MÁLAGA	6,11	5,25	5,38	6,17
SEVILLA (UPO)	6,61	5,39	5,56	6,05
DUA	5,98	5,32	5,38	5,99 (± 0.13)
% Aprobados	65	58.3	59.9	70,1

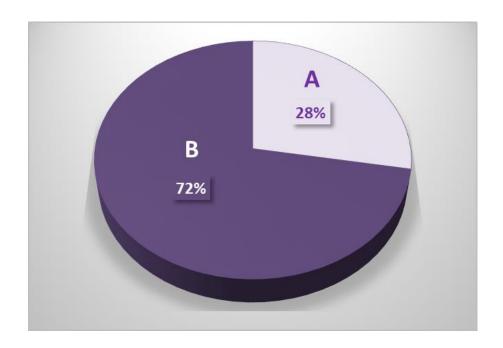
RESULTADOS SELECTIVIDAD 2019

JUNIO 2019

ALUMNOS PRESENTADOS: 647

Nota promedio DUA: 5,99 Nota Huelva: 5,86

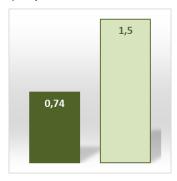
% Aprobados DUA: 70,1 % Aprobados Huelva: 68,7

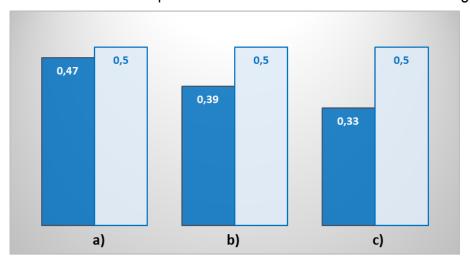

SEPTIEMBRE 2019

ALUMNOS PRESENTADOS: 94

Nota promedio DUA: 5,15 Nota Huelva: 4,95

% Aprobados DUA: 54,1 % Aprobados Huelva: 50,1

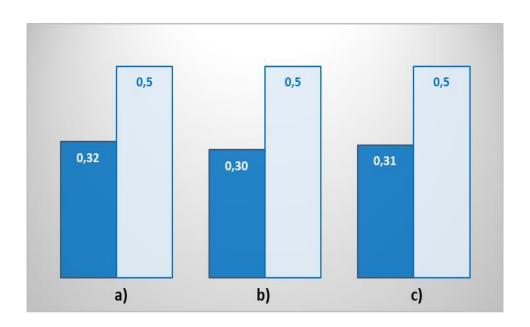

SELECCIÓN DE OPCIÓN


NOTA MEDIA OPCION A: 5.63

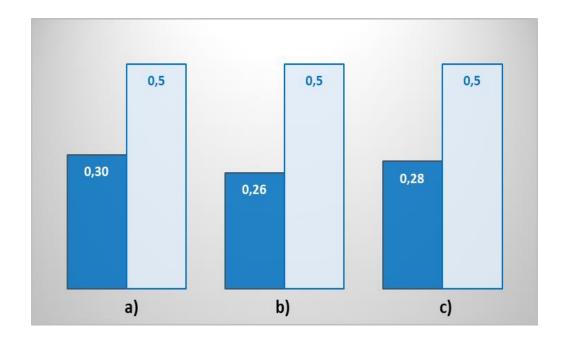
NOTA MEDIA OPCION B: 5.94

- 1.- Formule o nombre los siguientes compuestos: a) Óxido de vanadio(V); b) Hidruro de magnesio;
- c) N-Metiletanamina; d) Sr(OH)₂; e) Sn(IO₃)₂; f) CH₃CHBrCOOH.

- **2.-** Para los siguientes grupos de números cuánticos: (4,2,0,+1/2); (3,3,2,-1/2); (2,0,1,+1/2); (2,0,0,-1/2).
- a) Indique cuáles son posibles y cuáles no para un electrón en un átomo.
- b) Para las combinaciones correctas, indique el orbital donde se encuentra el electrón.
- c) Ordene razonadamente los orbitales del apartado anterior en orden creciente de energía.

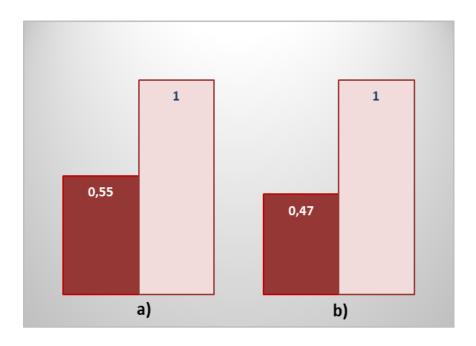


3.- Uno de los métodos utilizados industrialmente para la obtención de dihidrógeno consiste en hacer pasar una corriente de vapor de agua sobre carbón al rojo, según la reacción:

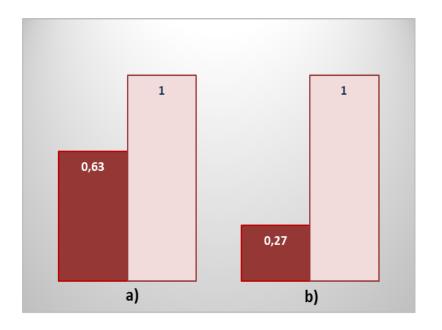

$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$$
 $\Delta H = +131.2 \text{ kJ} \cdot \text{mol}^{-1}$

Explique cómo afectan los siguientes cambios al rendimiento de producción de H₂:

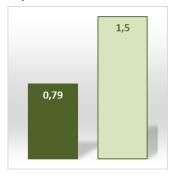
- a) La adición de C(s).
- **b)** El aumento de temperatura.
- c) La reducción del volumen del recipiente.

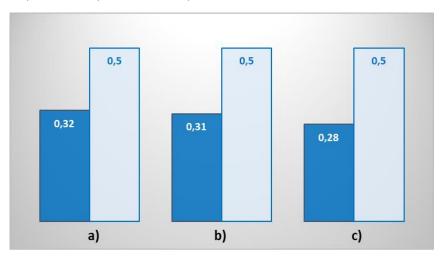


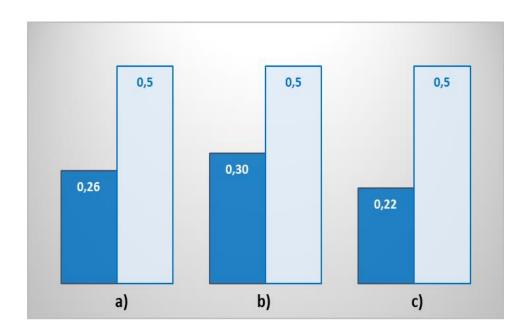
- **4.-** Razone si son verdaderas o falsas las siguientes afirmaciones:
- a) La regla de Markovnikov predice qué compuesto mayoritario se forma en las reacciones de eliminación.
- b) Un alquino puede adicionar halógenos.
- c) Un compuesto que desvía el plano de la luz polarizada presenta isomería geométrica.

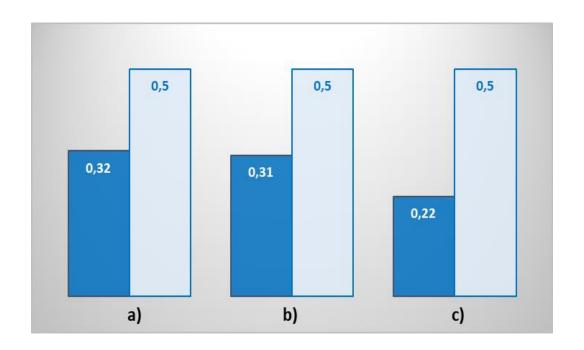


- **5.- a)** Calcule la concentración de una disolución de ácido benzoico (C_6H_5COOH) de pH = 2,3.
- **b)** Determine la masa de Ba(OH)₂ necesaria para neutralizar 25 mL de una disolución comercial de HNO₃ del 58 % de riqueza y densidad 1,356 g·mL⁻¹.

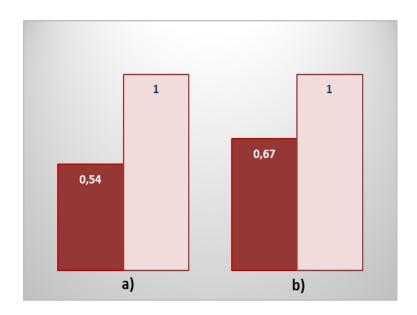

Datos: K_a (C_6H_5COOH) = 6,31·10⁻⁵. Masas atómicas relativas H=1; O=16; Ba=137,3 y N=14.


- **6.-** El PbCO₃ es una sal muy poco soluble en agua con una K_s de 1,5·10⁻¹⁵. Calcule, basándose en las reacciones correspondientes:
- a) La solubilidad de la sal.
- **b)** Si se mezclan 150 mL de una disolución de Pb(NO₃)₂ de concentración 0,04 M con 50 mL de una disolución de Na₂CO₃ de concentración 0,01 M, razone si precipitará el PbCO₃.


- 1.- Formule o nombre los siguientes compuestos: a) Peróxido de estroncio; b) Bromuro de hidrógeno;
- c) 4-Metilpentan-2-ona; d) Mn₂O₇; e) H₃AsO₃; f) CH₃COOCH₃.


- **2.-** Considere los átomos X e Y, cuyas configuraciones electrónicas de la capa de valencia en estado fundamental son 4s¹ y 3s² 3p⁴, respectivamente.
- a) Si estos dos elementos se combinaran entre sí, justifique el tipo de enlace que se formaría.
- b) Escriba la fórmula del compuesto formado.
- c) Indique dos propiedades previsibles para este compuesto.

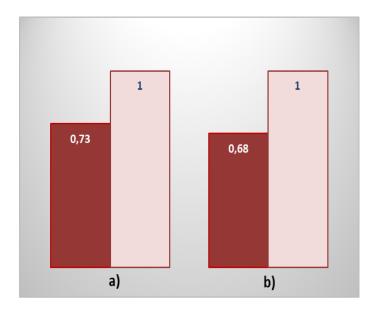
- **3.-** Razone si son ciertas o falsas las siguientes afirmaciones:
- a) En disolución acuosa, cuanto más fuerte es una base más fuerte es su ácido conjugado.
- **b)** En una disolución acuosa de una base, el pOH es menor que 7.
- c) El ion H₂PO₄ es una sustancia anfótera en disolución acuosa, según la teoría de Brönsted-Lowry.



- **4.-** Dados los compuestos CH₃-CH₂-O-CH₂-CH₃, CH₂=CH-CHOH-CH₃, CH₃-CHOH-CH₃ y CH₃-CH₂-CO-CH₃, conteste razonadamente:
- a) Cuál o cuáles presentan un carbono quiral.
- b) Cuáles son isómeros entre sí.
- c) Cuáles darían un alqueno como producto de una reacción de eliminación.

- **5.-** En un recipiente de 2 L se introducen 0,043 moles de NOCl(g) y 0,01 moles de $Cl_2(g)$. Se cierra, se calienta hasta una temperatura de 30 °C y se deja que alcance el equilibrio: 2 NOCl(g) \rightleftharpoons $Cl_2(g)$ + 2 NO(g). Calcule:
- a) El valor de K_C sabiendo que en el equilibrio se encuentran 0,031 moles de NOCl(g).
- b) La presión total y las presiones parciales de cada gas en el equilibrio.

Datos: R = 0,082 atm·L·mol⁻¹·K⁻¹.



6.- El bromuro de potasio reacciona con ácido sulfúrico concentrado según la reacción:

$$KBr + H_2SO_4 \rightarrow Br_2 + K_2SO_4 + SO_2 + H_2O$$

- a) Ajuste las ecuaciones iónica y molecular por el método del ion-electrón.
- **b)** ¿Qué volumen de bromo líquido (densidad 2,92 g·mL⁻¹) se obtendrá al tratar 130 g de bromuro de potasio (KBr) con ácido sulfúrico en exceso?

Datos: masas atómicas relativas Br=80 y K=39.

