Una modificación del cociente de localización interindustrial para la proyección de las tablas input-output subterritoriales

Palabras clave:

CILQ, cocientes de localización, AFLQ, métodos non-survey, tablas input-output regionales

Resumen

La proyección de cuentas económicas a nivel sub-territorial se establece primordialmente a través de cocientes de localización (LQ). Así, los grados de especialización sectoriales a dicho nivel actuarán como piezas clave en las proyecciones espaciales. En este artículo se reivindica un uso rectificado del Cross-Industry Location Quotient (CILQ). Indirectamente, se trata de comprobar hasta qué punto los CILQ están bien explotados, dado que son la referencia fundamental en otras técnicas. A efectos de análisis, se toman como referencia las tablas input-output (IO) del Área Euro 19 para los años 2010 y 2015. Se recurre a un estadístico para medir el grado de similitud entre los marcos contables de diez países de dicha área y sus proyecciones mediante el CILQ, la fórmula de Flegg, su versión aumentada y la variante del CILQ.

Descargas

La descarga de datos todavía no está disponible.

Altmetrics

Biografía del autor/a

Napoleón Guillermo Sánchez-Chóez, First institution: Escuela Politécnica Nacional, Quito, Ecuador Second institution: University of Santiago de Compostela, Santiago de Compostela, Spain

First Affiliation: Departamento de Estudios Organizacionales y Desarrollo Humano, Escuela Politécnica Nacional, Quito, Ecuador

Rango First AffiliationProfesor Agregado

Second Affiliation: Institute of Development Studies of Galicia (IDEGA) University of Santiago de Compostela, Santiago de Compostela, Spain

Rango Second AffiliationPh.D. student (programa doctoral en Economía y Empresa)


Xesús Pereira-López, University of Santiago de Compostela, Santiago de Compostela, Spain

First Affiliation: Institute of Development Studies of Galicia (IDEGA) University of Santiago de Compostela, Santiago de Compostela, Spain

Rango first and second affiliationProfesor titular

Second Affiliation: Department of Quantitative Economics, University of Santiago de Compostela, Santiago de Compostela, Spain.

Melchor Fernández-Fernández, University of Santiago de Compostela, Santiago de Compostela, Spain

First Affiliation: Institute of Development Studies of Galicia (IDEGA) University of Santiago de Compostela, Santiago de Compostela, Spain

Rango first and second affiliationProfesor titular

Second Affiliation: Department of Fundamentals of Economic Analysis, University of Santiago de Compostela, Santiago de Compostela, Spain

Citas

Bonfiglio, A. (2005). Can non-survey methods substitute for survey-based models? A performance analysis of indirect techniques of estimating IO coefficients and multipliers. In Quaderno di ricerca number 230. Ancona: Dipartimento di Scienze Economiche e Sociali, Universita’ Politecnica delle Marche.

Bonfiglio, A., & Chelli, F. (2008). Assessing the behaviour of non-survey methods for constructing regional input-output tables through a Monte Carlo simulation. Economic Systems Research, 20(3), 243–258. https://doi.org/10.1080/09535310802344315

Flegg, A. T., Mastronardi, L. J., & Romero, C. A. (2016). Evaluating the FLQ and AFLQ formulae for estimating regional input coefficients: Empirical evidence for the province of Córdoba, Argentina. Economic Systems Research, 28(1), 21–37. https://doi.org/10.1080/09535314.2015.1103703

Flegg, A. T., & Tohmo, T. (2013a). A Comment on Tobias Kronenberg’s “Construction of Regional Input-Output Tables Using Nonsurvey Methods: The Role of Cross-Hauling.” International Regional Science Review, 36(2), 235–257. https://doi.org/10.1177/0160017612446371

Flegg, A. T., & Tohmo, T. (2013b). Regional input-output tables and the FLQ formula: A case study of Finland. Regional Studies, 47(5), 703–721. https://doi.org/10.1080/00343404.2011.592138

Flegg, A. T., & Tohmo, T. (2016). Estimating regional input coefficients and multipliers: The use of FLQ is not a gamble. Regional Studies, 50(2), 310–325. https://doi.org/10.1080/00343404.2014.901499

Flegg, A. T., & Tohmo, T. (2019). The regionalization of national input-output tables: A study of South Korean regions. Papers in Regional Science, 98(2), 601–620. https://doi.org/10.1111/pirs.12364

Flegg, A. T., & Webber, C. D. (1997). On the appropriate use of location quotients in generating regional input-output tables: Reply. Regional Studies, 31(8), 795–805. https://doi.org/10.1080/713693401

Flegg, A. T., & Webber, C. D. (2000). Regional size, regional specialization and the FLQ formula. Regional Studies, 34(6), 563–569. https://doi.org/10.1080/00343400050085675

Flegg, A. T., Webber, C. D., & Elliott, M. V. (1995). On the appropriate use of location quotients in generating regional input-output tables. Regional Studies, 29(6), 547–561. https://doi.org/10.1080/00343409512331349173

Isard, W. (1953). Regional Commodity Balances and Interregional Commodity Flows. In Source: The American Economic Review (Vol. 43, Issue 2).

Jackson, R. W., & Murray, A. T. (2004). Alternative input-output matrix updating formulations. Economic Systems Research, 16(2), 135–148. https://doi.org/10.1080/0953531042000219268

Jahn, M., Flegg, A. T., & Tohmo, T. (2020). Testing and implementing a new approach to estimating interregional output multipliers using input-output data for South Korean regions. Spatial Economic Analysis, 00(0), 1–21. https://doi.org/10.1080/17421772.2020.1720918

Jalili, A. R. (2000). Comparison of two methods of identifying input-output coefficients for exogenous estimation. Economic Systems Research, 12(1), 113–129. https://doi.org/10.1080/095353100111317

Jensen, R. C., Mandeville, T. D., & Karunaratne, N. D. (2017). Regional Economic Planning: Generation of Regional Input-output Analysis. Routledge.

Kowalewksi, J. (2015). Regionalization of national input-output tables: Empirical evidence on the use of the FLQ formula. Regional Studies, 49(2), 240–250. https://doi.org/10.1080/00343404.2013.766318

Kronenberg, T. (2009). Construction of regional input-output tables using nonsurvey methods: The role of cross-hauling. International Regional Science Review, 32(1), 40–64. https://doi.org/10.1177/0160017608322555

Lahr, M. L., & Stevens, B. H. (2002). A study of the role of regionalization in the generation of aggregation error in regional input-output models. Journal of Regional Science, 42(3), 477–507. https://doi.org/10.1111/1467-9787.00268

Lamonica, G. R., & Chelli, F. M. (2018). The performance of non-survey techniques for constructing sub-territorial input-output tables. Papers in Regional Science, 97(4), 1169–1202. https://doi.org/10.1111/pirs.12297

Lamonica, G. R., Recchioni, M. C., Chelli, F. M., & Salvati, L. (2020). The efficiency of the cross-entropy method when estimating the technical coefficients of input-output tables. Spatial Economic Analysis, 15(1), 62–91. https://doi.org/10.1080/17421772.2019.1615634

Lampiris, G., Karelakis, C., & Loizou, E. (2019). Comparison of non-survey techniques for constructing regional input-output tables. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03337-5

Mahajan, S., Beutel, J., Guerrero, S., Inomata, S., Larsen, S., Moyer, B., ... & Rompaey, C. V. (2018). Handbook on supply, use and input-output tables with extensions and applications. United Nations, No. halshs-01876674.

McCann, P., & Dewhurst, J. H. L. (1998). Regional size, industrial location and input-output expenditure coefficients. Regional Studies, 32(5), 435–444. https://doi.org/10.1080/00343409850116835

Miller, R. E., & Blair, P. D. (2009). Input-output analysis: Fundations and extensions (2nd ed.). Cambridge University Press.

Mínguez, R., Oosterhaven, J., & Escobedo, F. (2009). Cell-corrected RAS method (CRAS) for updating or regionalizing an input-output matrix. Journal of Regional Science, 49(2), 329–348. https://doi.org/10.1111/j.1467-9787.2008.00594.x

Morrison, W. I., & Smith, P. (1974). Non-survey input-output techniques at the small area level: An evaluation. Journal of Regional Science, 14(1), 1–14. https://doi.org/10.1111/j.1467-9787.1974.tb00425.x

Oosterhaven, J., van der Knijff, E. C., & Eding, G. J. (2003). Estimating interregional economic impacts: An evaluation of nonsurvey, semisurvey, and full-survey methods. Environment and Planning A: Economy and Space, 35(1), 5–18. https://doi.org/10.1068/a3569

Pereira-López, X., Carrascal-Incera, A., & Fernández-Fernández, M. (2020). A bidimensional reformulation of location quotients for generating input-output tables. Spatial Economic Analysis, 15(4), 476–493. https://doi.org/10.1080/17421772.2020.1729996

Schaffer, W. A., & Chu, K. (1969). Non-survey techniques for constructing regional interindustry models. Papers of the Regional Science Association, 23, 83–101. https://doi.org/https://doi.org/10.1007/BF01941876

Towa, E., Zeller, V., Merciai, S., Schmidt, J., & Achten, W. M. J. (2020). Toward the development of subnational hybrid input–output tables in a multiregional framework. Journal of Industrial Ecology, 1–19. https://doi.org/10.1111/jiec.13085

Wiebe, K. S., & Lenzen, M. (2016). To RAS or not to RAS? What is the difference in outcomes in multi-regional input-output models? Economic Systems Research, 28(3), 383–402. https://doi.org/10.1080/09535314.2016.1192528

Zhao, X., & Choi, S. G. (2015). On the regionalization of input-output tables with an industry-specific location quotient. Annals of Regional Science, 54(3), 901–926. https://doi.org/10.1007/s00168-015-0693-x

Publicado
2022-12-15
Cómo citar
Sánchez-Chóez, N. G., Pereira-López, X., & Fernández-Fernández, M. (2022). Una modificación del cociente de localización interindustrial para la proyección de las tablas input-output subterritoriales. Revista de Economía Mundial, (62), 25-50. https://doi.org/10.33776/rem.vi62.5130
Sección
Sección General